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Abstract. We address the problem dfieiently discovering the influential nodes

in a social network under theusceptiblénfectegsusceptible (SIS) model diffu-

sion model where nodes are allowed to be activated multiple times. The compu-
tational complexity drastically increases because of this multiple activation prop-
erty. We solve this problem by constructing a layered graph from the original
social network with each layer added on top as the time proceeds, and apply-
ing the bond percolation with pruning and burnout strategies. We experimentally
demonstrate that the proposed method gives much better solutions than the con-
ventional methods that are solely based on the notion of centrality for social net-
work analysis using two large-scale real-world networks (a blog network and a
wikipedia network). We further show that the computational complexity of the
proposed method is much smaller than the conventional naive probabilistic sim-
ulation method by a theoretical analysis and confirm this by experimentation.
The properties of the influential nodes discovered are substantifityetit from

those identified by the centrality-based heuristic methods.

1 Introduction

Social networks mediate the spread of various information including topics, ideas and
even (computer) viruses. The proliferation of emails, blogs and social networking ser-
vices (SNS) in the World Wide Web accelerates the creation of large social networks.
Therefore, substantial attention has recently been directed to investigating information
diffusion phenomena in social networks [1-3].

Overall, finding influential nodes is one of the most central problems in social net-
work analysis. Thus, developing methods to do this on the basis of informaffasidn
is an important research issue. Widely-used fundamental probabilistic models of infor-
mation difusion are théndependent cascade (IC) modaeld thelinear threshold (LT)
model[4, 5]. Researchers investigated the problem of finding a limited number of influ-
ential nodes that ardfective for the spread of information under the above models [4,
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6]. This combinatorial optimization problem is called thBuence maximization prob-

lem Kempe et al. [4] experimentally showed on large collaboration networks that the
greedy algorithm can give a good approximate solution to this problem, and mathe-
matically proved a performance guarantee of the greedy solution (i.e., the solution ob-
tained by the greedy algorithm). Recently, methods based on bond percolation [6] and
submodularity [7] were proposed foffieiently estimating the greedy solution. The in-
fluence maximization problem has applications in sociology and “viral marketing” [3],
and was also investigated in dférent setting (a descriptive probabilistic model of in-
teraction) [8, 9]. The problem has recently been extended to influence control problems
such as a contamination minimization problem [10].

The IC model can be identified with the so-calledsceptiblénfectegrecovered
(SIR) modefor the spread of a disease [11, 5]. In the SIR model, only infected individ-
uals can infect susceptible individuals, while recovered individuals can neither infect
nor be infected. This implies that an individual is never infected with the disease mul-
tiple times. This property holds true for the LT model as well. However, there exist
phenomena for which the property does not hold. For example, consider the follow-
ing propagation phenomenon of a topic in the blogosphere: A blogger who has not yet
posted a message about the topic is interested in the topic by reading the blog of a friend,
and posts a message about it (i.e., becoming infected). Next, the same blogger reads a
new message about the topic posted by some other friend, and may post a message
(i.e., becoming infected) again. Most simply, this phenomenon can be modeled by an
susceptiblénfectedsusceptible (SIS) modiebm the epidemiology. Like this example,
there are many examples of informatioffdsion phenomena for which the SIS model
is more appropriate, including the growth of hyper-link posts among bloggers [2], the
spread of computer viruses without permanent virus-checking programs, and epidemic
disease such as tuberculosis and gonorrhea [11].

We focus on an information flusion process in a social netwotk= (V, E) over
a given time spaf on the basis of an SIS model. Here, the SIS model is a stochastic
process model, and thefluenceof a set of nodesl! at time-steg, o(H, t), is defined as
the expected number of infected nodes at time-stden all the nodes iAl are initially
infected at time-step = 0. We refer too- as theinfluence functioror the SIS model.
Developing an fective method for estimating({v},t), (ve V,t=1,..., T) is vital for
various applications. Clearly, in order to extract influential nodes, we must estimate the
value ofo({v}, t) for every nodev and time-steps. Thus, we proposed a novel method
based on the bond percolation with afeetive pruning strategy tdfciently estimate
{o({v},t);ve V,t=1,..., T} for the SIS model in our previous work [12].

In this paper, we consider solving the influence maximization problems on a net-
work G = (V, E) under the SIS model. Here, unlike the cases of the IC and the LT
models, we define two influence maximization problems fia-time maximization
problemand theaccumulated-time maximization problgfor the SIS model. We intro-
duce the greedy algorithm for solving the problems according to the work of Kempe et
al. [4] for the IC and the LT models. Now, let us consider the problem of influence max-
imization at the final time step (i.e., final-time maximization problem) as an example.
We then note that for solving this problem by the greedy algorithm, we need a method
for not only evaluatindo({v}, T); v € V}, but also evaluating thearginal influence
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gains{oc(HU {v},T) — o(H,T); v e V \ H} for any non-empty subsét of V. Needless

to say, we can naively estimate the marginal influence gains for any non-empty subset
H of V by simulating the SIS mod&lHowever, this naive simulation method is overly
inefficient and not practical at all. In this paper, by incorporating the new techniques
(the pruning and the burnout methods) into the bond percolation method, we propose
a method to fiiciently estimate the marginal influence gains for any non-empty subset
H of V, and apply it to approximately solve the two influence maximization problems
for the SIS model by the greedy alogrithm. We show that the proposed method is ex-
pected to achieve a large reduction in computational cost by theoretically comparing
computational complexity with other more naive methods. Further, using two large real
networks, we experimentally demonstrate that the proposed method is much more ef-
ficient than the naive greedy method based on the bond percolation method. We also
show that the discovered nodes by the proposed method are substanfiietrdifrom

and can result in considerable increase in the influence over the conventional methods
that are based on the notion of various centrality measures.

2 Information Di ffusion Model

LetG = (V, E) be a directed network, whekéandE (c V x V) stand for the sets of all
the nodes and (directed) links, respectively. Foramy, let I'(v; G) denote the set of
the child nodes (directed neighbors)\wthat is,

r'\v;G)={weV,; (v,w) e E}

2.1 SIS Model

An SIS model for the spread of a disease is based on the cycle of disease in a host. A per-
son is firstsusceptibleo the disease, and beconiefectedwith some probability when
the person encounters an infected person. The infected person becomes susceptible to
the disease soon without moving to the immune state. We consider a discrete-time SIS
model for information diusion on a network. In this context, infected nodes mean that
they have just adopted the information, and we call these infected actiesnodes.

We define the SIS model for informationfilision onG. In the model, the diusion
process unfolds in discrete time-stéps 0, and it is assumed that the state of a node
is either active or inactive. For every link,{) € E, we specify a real valug,, with
0 < puy < 1in advance. Herqy,, is referred to as thpropagation probabilitythrough
link (u, v). Given an initial set of active nodesand a time spaff, the difusion process
proceeds in the following way. Suppose that nadlecomes active at time-stef< T).
Then, nodeu attempts to activate everny € I'(u; G), and succeeds with probability
puv- If Nnodeu succeeds, then nodewill become active at time-stefp+ 1. If multiple
active nodes attempt to activate nodén time-stept, then their activation attempts
are sequenced in an arbitrary order. On the other hand, medk become or remain
inactive at time-step+ 1 unless it is activated from an active node in time-stefhe
process terminates if the current time-step reaches the timeTlimit

2 Note that the method we proposed in [12] does not perform simulation.
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2.2 Influence Function

For the SIS model o6, we consider a diusion sample from an initially activated node
setH c V over time sparf. Let S(H,t) denote the set of active nodes at time-step

t. Note thatS(H, t) is a random subset &f andS(H, 0) = H. Let o(H, t) denote the
expected number ¢8(H, t)|, where|X| stands for the number of elements in aXetVe

call o(H, t) theinfluenceof node seH at time-stefd. Note thato is a function defined

on V1'% {0,1,---,T}. We call the functiorv- theinfluence functiofior the SIS model

over time sparT on networkG. In view of more complex social influence, we need to
incorporate a number of social factors with social networks such as rank, prestige and
power. In our approach, we can encode such factorsfhssitin probabilities of each
node.

It is important to estimate the influence functionefficiently. In theory we can
simply estimater by the simulations based on the SIS model in the following way.
First, a stficiently large positive integei is specified. For eacH c V, the dtfusion
process of the SIS model is simulated from the initially activated nodel sahd the
number of active nodes at time-stgfS(H, t), is calculated for everye {0,1,--- ,T}.
Then,o(H, t) is estimated as the empirical mean®fH, t)|'s that are obtained froriv
such simulations. However, this is extremelyfiigdent, and cannot be practical.

3 Influence Maximization Problem

We mathematically define the influence maximization problems on a neGvery, E)
under the SIS model. L& be a positive integer witK < |V|. First, we define thénal-
time maximization problenfrind a seHj, of K nodes to target for initial activation such
thato(Hy; T) = o(H; T) for any setH of k nodes, that is, find

Hy = arg{Hc\mgéK} o(H;T). (1)

Second, we define thaccumulated-time maximization problefind a setH; of K
nodes to target for initial activation such thafH’; 1)+ --- + oc(H;;T) > oo(H; 1) +
-+ o (H; T) for any setH of k nodes, that is, find

T
He = arg{HC\mE}éK} lo-(H;t). (2)

The first problem cares only how many nodes are influenced at the time of interest.
For example, in an election campaign it is only those people who are convinced to vote
the candidate at the time of voting that really matter and not those who were convinced
during the campaign but changed their mind at the very end. Maximizing the number
of people who actually vote falls in this category. The second problem cares how many
nodes have been influenced throughout the period of interest. For example, maximizing
the amount of product purchase during a sales campaign falls in this category.
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4  Proposed Method

Kempe et al. [4] showed theffectiveness of the greedy algorithm for the influence
maximization problem under the IC and LT models. In this section, we introduce the
greedy algorithm for the SIS model, and describe some techniques (the bond percola-
tion method, the pruning method, and the burnout method) flariently solving the
influence maximization problem under the greedy algorithm, together with some argu-
ments for evaluating the computational complexity for these methods.

4.1 Greedy Algorithm

We approximately solve the influence maximization problem by the greedy algorithm.
Below we describe this algorithm for the final-time maximization problem:

Greedy algorithm for the final-time maximization problem:
Al. SetH « 0.

A2. Fork = 1toK do the following steps:

A2-1. Choose a node € V \ H maximizingo(H U {v}, T).
A2-2. SetH « H U {w}.

A3. OutputH.

Here we can easily modify this algorithm for the accumulated-time maximization prob-
lem by replacing stefA2-1 as follows:

Greedy algorithm for the accumulated-time maximization problem:
AL. SetH « 0.

A2. Fork = 1toK do the following steps:

A2-1'. Choose anode € V\H maximizinthT=1 o(H U {v},1).
A2-2. SetH « H U {v}.

A3. OutputH.

Let Hx denote the set oK nodes obtained by this algorithm. We referHq as the
greedy solutiorof sizeK. Then, it is known that

o(Hk,t) > (1— %) o(Hg, ),

that is, the quality guarantee bl is assured [4]. Herd, is the exact solution defined
by Equation (1) or (2).

To implement the greedy algorithm, we need a method for estimating all the marginal
influence degreegr(H U {v},1); v € V \ H} of H in stepA2-1 or A2-1" of the algo-
rithm. In the subsequent subsections, we propose a methofiitiemtly estimating the
influence functioro- over time spafm for the SIS model on networ@.
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graph G layered graph G"

Fig. 1. An example of a layered graph.

4.2 Layered Graph

We build a layered grapB™ = (VT,E") from G in the following way (see Figure 1).
First, for each node € V and each time-stepe {0,1,---, T}, we generate a copy
of v at time-ste. Let V; denote the set of copies of alk V at time-stegd. We define
VT by VT = VpU V; U --- U Vr. In particular, we identifyv with V. Next, for each
link (u,v) € E, we generatd links (_1,v), (t € {1,---,T}), in the set of node¥".
We setE; = {(u1, W); (u,V) € E}, and defineE” by ET = E; U - -- U E7. Moreover, for
any link (U1, ;) of the layered grapls', we define the occupation probabilidy, , ,
bY Qu 1w = Puv-

Then, we can easily prove that the SIS model with propagation probabjlitiese
E} on G over time spanl is equivalent to théoond percolation process (BP) with
occupation probabilitiedge; e € ET} on G'.2 Here, the BP process with occupation
probabilities{ge;e € ET} on G' is the random process in which each liake ET
is independently declared “occupied” with probabiliy We perform the BP process
onGT, and generate a graph constructed by occupied li@ks= (VT, ET). Then, in
terms of information dtusion by the SIS model 08, an occupied linki_1, ;) € E¢
represents a linku(v) € E through which the information propagates at time-step
and an unoccupied linku(_;, ;) € E; represents a linkuv) € E through which the
information does not propagate at time-stepor anyv € V \ H, let F(H U {v}; GT)
be the set of all nodes that can be reached ftbma {v} € V through a path on the
graphGT. When we consider a fision sample from an initial active nodes V for
the SIS model o, F(H U {v}; GT) N V; represents the set of active nodes at time-step
t, S(H U {v}, 1).

3 The SIS model over time spahon G can be exactly mapped onto the IC model®@h[4].
Thus, the result follows from the equivalence of the BP process and the IC model [11, 4, 6].
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4.3 Bond Percolation Method

Using the equivalent BP process, we present a methodfioresmtly estimating influ-
ence functiornr. We refer to this method as trmv method Unlike the naive method,

the BP method simultaneously estimatg$i U {v}, t) for all v € V \ H. Moreover, the

BP method does not fully perform the BP process, but performs it partially. Note first
that all the paths from nodé$ U {v} (v € V \ H) on the graptGT represent a diusion
sample from the initial active nodés U {v} for the SIS model oi®. Let L’ be the set

of the links inGT that is not in the dfusion sample. For calculatin§(H U {v},t)], it

is unnecessary to determine whether the linkk’iare occupied or not. Therefore the
BP method performs the BP process for only an appropriate set of lir®S.ifthe BP
method estimates by the following algorithm:

BP method:

B1. Seto(H U {v},t) — Oforeachve V\Handte {1,--- ,T}.

$2. Repeat the foIIowrng procedum times:

B2-1. Initialize S(H U {v},0) = H U {v} for eachv € V \ H, and setA(0) « V \ H,
A) < 0, - A(T) — 0.

$2-2. Fort = 1toT do the following steps:

B2-2a. ComputeB(t — 1) = Uyeag-1) S(H U {v},t - 1).

B2-2b. Perform the BP process for the links frdt—1) inG', and generate the graph
G constructed by the occupied links.

B2-2c. For eachv € A(t - 1) computeS(H U VL D) = UwesHumi-1) (W3 Gy), and set
o(HU{V}, 1) « o(HU{V},t) + |S(Hu 10| andA(t) — A(t)u v} if S(Hu L,t) # 0.

8B3. For eachv € V \ H andt € {1,--- , T}, seto(H U {v},t) « a'(H U {v},t)/M, and
outputo(H U {v}, ).

Note thatA(t) finally becomes the set of information source nodes that have at least an
active node at time-stepthat is,A(t) = {ve V \ H; S(H U {v},t) # 0}. Note also that

B(t — 1) is the set of nodes that are actrvated at time- Bte;l by some source nodes,
that is,B(t — 1) = Uyey S(H U {v},t = 1).

Now we estimate the computational complexity of the BP method in terms of the
number of the nodegy,, that are identified in stefg2-2a, the number of the coin-flips,
Nb, for the BP process in steg2-2b, and the number of the linkA/;, that are followed
in stepB2-2c. Letd(v) be the number of out-links from node(i.e., out-degree o¥)
andd’(v) the average number of occupied out-links from nedsdter the BP process.
Here we can estimaté'(v) by X.er.c) Pvw- Then, for each time-stepe {1,---, T},
we have

Na= ), ISHUNLE-D), Ap= > dw), Ne= > > dw) 3

VeA(t-1) weB(t-1) veA(t—-1) weS(HU{v},t-1)

on average.

In order to compare the computational complexity of the BP method to that of the
naive method, we consider mapping the naive method onto the BP framework, that is,
separating the coin-flip process and the link-following process. We can easily verify
that the following algorithm in the BP framework is equivalent to the naive method:
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A method that is equivalent to the naive method:

B1. Seto(H U {v},t) « Oforeachve V\Handte {1,---,T}.
$2. Repeat the foIIowmg proceduM times:
B2-1. Initialize S(H U {v},0) = {v} for eachv € V \ H, and setA(0) « V \ H,

A1) « 0, - A(T) — 0.

B2-2. Fort = 1 to T do the following steps:

B2-2b’. Foreachr € A(t—1), perform the BP process for the links fr&@H u{v}, t—1)
in GT, and generate the grag(v) constructed by the occupied links.

B2-2¢'. Foreachy € A(t— 1) computeS(HU 1) = Uwesrupi-1 IT'(W; ét(v)) and set
o(HU{v}, 1) « oc(HU{v t)+|S(H U{v}, t) andA(t) « A(t)u v} if S(H u vi,t) # 0.

83. For each/ € V \ H andt ef{l,---,T}, seto(H U {v},t) « 0'(H U { t)/M and
outputo(H U {v}, ).

Then, foreact € {1,--- , T}, the number of coin-flipsiy, in stepB2-2b’ is

Ny= > D, dw), @
VeA(t—1) weS(HU{v},t-1)

and the number of the linksyy, followed in stepB2-2c¢’ is equal toN; in the BP
method on average. From equations (3) and (4), we can se&ghiatmuch larger than

Ne = N¢, especially for the case where thdtdsion probabilities are small. We can
also see thalvy, is generally much larger than each/sf and NV, in the BP method for

a real social network. In fact, since such a network generally includes large clique-like
subgraphs, there are many nodes V such thatd(w) > 1, and we can expect that
Zven-1) IS(H U (v} t = 1)1 > | Uveae-1) S(H U {v}, t = 1) (= [B(t - 1)]). Therefore, the

BP method is expected to achieve a large reduction in computational cost.

4.4 Pruning Method

In order to further improve the computation&ieiency of the BP method, we introduce

a pruning technique and propose a method referred to &BRheith pruning methad

The key idea of the pruning technique is to utilize the following property: Once we have
S(H U {u}, to) = S(H U {v}, tg) at some time-stefy on the course of the BP process for

a pair of information source nodasandyv, then we havé&S(H U {u}, t) = S(H U {v}, )

for all t > tp. The BP with pruning method estimatesy the foIIowmg algonthm

BP with pruning method

B1. Seto(H U {v},t) « O0foreachve V\Handte {1,---,T}.

$2. Repeat the foIIowmg proceduid times:

$B2-1". Initialize S(H U {v};0) = HU {v }for eachv € V \ H, and setA(0) « V \ H,
A(Q) «0,---, A(T) « 0, andC(v) « {v} for eachve V \ H.

B2-2. Fort = 1 to T do the following steps

B2-2a. ComputeB(t — 1) = Uyeag-1) S(H U {v}, 1 - 1).

B2-2b. Perform the BP process for the Iinks frd]s(t 1)inGT, and generate the graph
G, constructed by the occupied links.

B2-2¢”. For eachv € A(t - 1), computeS(H U {v},t) = Unespumr1) I'(W; Gy), set
At) — AU {v}if S(HU{v},t) # 0, and setr(H u{u},t) « oc(HU{u},t) +|S(HU
v}, t)| for eachu € C(v).
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B2-2d. Check whetheS(H U {u},t) = S(H U {v},t) for u,v € A(t) and selC(v) «
C(v) U C(u) andA(t) « A(t) \ {u} if S(H U {u},t) = S(H U {v}, 1).

B3. For eachv € V \ Handt e {1,---,T} seto-(H U {v},t) « 0'(H U {v},t)/M, and
outputo(H U {v}, t).

Basically, by introducing ste32-2d and reducing the size Aft), the proposed method
attempts to improve the computationdtigiency in comparison to the original BP
method. For the proposed method, it is important to implemgidiently the equiva-
lence check process in st&2-2d. In our implementation, we first classify each A(t)
according to the value af = |S(H U {v},t)|, and then perform the equivalence check
process only for those nodes with the samalue.

4.5 Burnout Method

In order to further improve the computation#éieiency of the BP with pruning method,

we additionally introduce a burnout technique and propose a method referred to as
the BP with pruning and burnout methotflore specifically, we focus on the fact that
maximizing the marginal influence degre€¢H U {v},t) with respect tov € V \ H is
equivalent to maximizing the marginal influence gaijr(v,t) = o(H U {v},t) — o-(H, t).

Here on the course of the BP process for a newly added mformatlon source/node
maximizingey (v, t) reduces to maximizings(H U {v}, t) \ S(H, t)| on average. The BP

with pruning and burnout method estimatgsby the following algorithm:

BP with pruning and burnout methods:

Cl. Setpy(v,t) « Oforeachve V\Handte {1,---,T}.

C2. Repeat the following proceduid times

C2-1. Initialize S(H; 0) = H, andS({v}; 0) = for eachv € V \ H, and setA(0) «
VAH, A1) < 0,-- A(T) « 0, andC(v) v} for eachv e V \ H.

C2-2. Fort=1toT do the following steps:

C2-2a. ComputeB(t — 1) = Uyeag-1) S{VELt = 1)U S(H,t - 1).

C2-2b. Perform the BP process for the Iinks frddt—1) inG', and generate the graph
G, constructed by the occupied links.

C2-2c. ComputeS(H,t) = Uwes(Ht-1) LW, Gy), and for eachs € A(t — 1), compute
S({vh 1) = Uwes,i-1) T W; Gp) \ S(H, 1), setA(t) « A(t) U {v} if S({v}.t) # 0, and
seton({u}, t) « dn({u}, t) + |S({v}, t)] for eachu € C(v).

C2-2d. Check whetheB({u},t) = S({v},t) for u,v € A(t), and seC(v) « C(v) U C(u)
andA(t) « A(t) \ {u} if S{u},t) = S({v}, 1).

C3. Foreachv € V\ Handt € {1,---,T}, setou({v},1) « #u({v},t)/M, and output
Pr({vhb).

Intuitively, compared with the BP with pruning method, by using the burnout technique,
we can substantially reduce the size of the active node set$(bhu {v}, t) to S({v}, 1)
foreachv e V\H andt € {1,--- , T}. Namely, in terms of computational costs described
by Equation (3), we can expect to obtain smaller numbersvpand N whenH = 0.
However, how &ectively the proposed method works will depend on several conditions
such as network structure, time span, values fitidion probabilities, and so on. We
will do a simple analysis later and experimentally show that it is indéedtve.
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5 Experimental Evaluation

In the experiments, we report our evaluation results on the final-time maximization
problem due to the space limitation.

5.1 Network Data and Settings

In our experiments, we employed two datasets of large real networks used in [10], which
exhibit many of the key features of social networks.

The first one is a trackback network of Japanese blogs. The network data was col-
lected by tracing the trackbacks from one blog in the site “goo (#itlpg.goo.ne.jy”
in May, 2005. We refer to the network data as the blog network. The blog network was
a strongly-connected bidirectional network, where a link created by a trackback was
regarded as a bidirectional link since blog authors establish mutual communications
by putting trackbacks on each other’s blogs. The blog network had4¥2nodes and
79,920 directed links.

The second one is a network of people that was derived from the “list of people”
within Japanese Wikipedia. We refer to the network data as the Wikipedia network. The
Wikipedia network was also a strongly-connected bidirectional network, and,4&d 9
nodes and 24944 directed links.

For the SIS model, we assigned a uniform probabitityp the propagation proba-
bility pyy for any link (u, V) € E, that is,p,y = p. According to [4, 2], we set the value
of p relatively small. In particular, we set the value pto a value smaller than/dl,
whered is the mean out-degree of a network. Since the valuesndre about 63 and
25.85 for the blog and the Wikipedia networks, respectively, the corresponding values
of 1/d were about 5 and 003. We decided to sqi = 0.1 for the blog network and
p = 0.01 for the Wikipedia network. Also, for the time spainwe sefT = 30.

For the bond percolation method, we need to specify the nuivbei performing
the bond percolation process. According to [12], we et 10,000 for estimating
influence degrees for the blog and Wikipedia networks.

All our experimentation was undertaken on a single PC with an Intel Dual Core
Xeon X5272 3.4GHz processor, with 32GB of memory, running under Linux.

5.2 Comparison Methods

First, we compared the proposed method with three heuristics from social network anal-
ysis with respect to the solution quality. They are based on the notions of “degree cen-
trality”, “closeness centrality”, and “betweenness centrality” that are commonly used as
influence measure in sociology [13]. Here, the betweenness ofwnisddefined as the

total number of shortest paths between pairs of nodes that pass thwdbgtcloseness

of nodev is defined as the reciprocal of the average distance betwaed other nodes

in the network, and the degree of nodis defined as the number of links attached.to
Namely, we employed the methods of choosing nodes in decreasing order of these cen-
tralities. We refer to these methods as Hetweenness methathe closeness method

and thedegree methadespectively.
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Next, to evaluate thefectiveness of the pruning and the burnout strategies, we
compared the proposed method with the naive greedy method based on the BP method
with respect to the processing time. Hereafter, we refer to the naive greedy method
based on the BP method as the BP method for short.

5.3 Solution Quality Comparison

2500 — : ; yay ye v

2000 -

5 1500 -
(o))
3
(0]
2 1000k —O©— proposed
é’ —A— betweenness
i —— closeness
500 - —8— degree
0 L L L L L L
1 5 10 15 20 25 30

number of initial active nodes

Fig. 2. Comparison of solution quality for the blog network.

We first compared the quality of the solutiétx of the proposed method with that
of the betweenness, the closeness, and the degree methods for solving the problem of
the influence maximization at the final time sfépClearly, the quality oHy can be
evaluated by the influence degre€Hy, T). We estimated the value af(Hk, T) by
using the bond percolation method with = 10,000 according to [12].

Figures 2 and 3 show the influence degréelc, T) as a function of the number of
initial active node< for the blog and the Wikipedia networks, respectively. In the fig-
ures, the circles, triangles, diamonds, and squares indicate the results for the proposed,
the betweenness, the closeness, and the degree methods, respectively. The proposed
method performs the best for both networks, while the betweenness method follows for
the blog dataset and the degree method follows for the Wikipedeia dataset. Note that
how each of the conventional heuristics performs depends on the characteristics of the
network structure. These results imply that the proposed method wibelkcsieely, and
outperforms the conventional heuristics from social network analysis.

It is interesting to note that thienodes k = 1,2, ..., K) that are discovered to be
most influential by the proposed method are substantiafferdint from those that are
found by the conventional centrality-based heuristic methods. For example, the best
node k = 1) chosen by the proposed method for the blog dataset is ranked 118 for the
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Fig. 3. Comparison of solution quality for the Wikipedia network.

betweenness method, 659 for the closeness method and 6 for the degree method, and
the 15th nodek = 15) by the proposed method is ranked 1373, 8848 and 507 for the
corresponding conventional methods, respectively. The best kedé)chosen by the
proposed method for the Wikipedia dataset is ranked 580 for the betweenness method,
2766 for the closeness method and 15 for the degree method, and the 15tk adds) (

by the proposed method is ranked 265, 2041, and 21 for the corresponding conventional
methods, respectively. It is hard to find a correlation between these rankings, but for the
smallerk, it appears that degree centrality measure is better than the other centrality
measures, which can be inferred from Figures 2 and 3.

5.4 Processing Time Comparison

Next, we compared the processing time of the proposed method (BP with pruning and
burnout method) with that of the BP method. Iz€K, T) denote the processing time of

a method for solving the problem of the influece maximization at the final timeTstep
whereK is the number of initial active nodes. Figures 4 and 5 show the processing time
differencedr(K, T) = 7(K, T) — 7(K — 1, T) as a function of the number of initial active
nodesK for the blog and the Wikipedia networks, respectively. In these figures, the cir-
cles, and crosses indicate the results for the proposed and the BP methods, respectively.
Note thatdr(K, T) decreases d§ increases for the proposed method, wher&dK, T)
increases for the BP method. This means that tiferdince in the total processing time
becomes increasingly larger Ksincreases. In case of the blog dataset, the total pro-
cessing time foK = 5 is about 2 hours for the proposed method and 100 hours for the
BP methods. Namely, the proposed method is about 50 times faster than the BP method
for K = 5. The same is true for the Wikipedia dataset. The total processing time for
K = 5is about b hours for the proposed method and 9 hours the BP methods, and the
proposed method is about 18 times faster than the BP methdd f05. These results
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Fig. 4. Comparison of processing time for the blog network.

confirm that the proposed method is much mdi&ient than the BP method, and can
be practical.

6 Discussion

The influence functiowr(-, T) is submodular [4]. For solving a combinatorial optimiza-
tion problem of a submodular functiohon V by the greedy algorithm, Leskovec et

al. [7] have recently presented a lazy evaluation method that leads to far fewer (ex-
pensive) evaluations of the marginal incremefid U {v}) — f(H), (v € V \ H) in the
greedy algorithm foH # 0, and achieved an improvement in speed. Note here that their
method requires evaluatinifv) for all v € V at least. Thus, we can apply their method

to the influence maximization problem for the SIS model, where the influence function
o (-, T) is evaluated by simulating the corresponding random process. It is clear that 1)
this method is morefécient than the naive greedy method that does not employ the
BP method and instead evaluates the influence degrees by simulatin§tisediphe-
nomena, and 2) further the both methods become the sanie foll and empirically
estimate the influence functiaer(-, T) by probabilistic simulations. These methods also
requireM to be specified in advance as a parameter, wihkrethe number of simula-
tions. Note that the BP and the simulation methods can estimate influence dégtge

with the same accuracy by using the same valubldsee [12]). Moreover, as shown

in [12], estimating influence functiom(-, 30) by 1Q 000 simulations needed more than
35.8 hours for the blog dataset andshours for the Wikipedia dataset, respectively.
However, the proposed method fir = 30 needed less thanO7hours for the blog
dataset and.3 hours for the Wikipedia dataset, respectively. Therefore, it is clear that
the proposed method can be faster than the method by Leskovec [7] for the influence
maximization problem for the SIS model.
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Fig. 5. Comparison of processing time for the Wikipedia network.

7 Conclusion

Finding influential nodes is one of the most central problems in the field of social net-
work analysis. There are several models that simulate how various things, e.g., news,
rumors, diseases, innovation, ideas, et@ude across the network. One such realis-

tic model is thesusceptiblénfectegsusceptible (SIS) modein information difusion

model where nodes are allowed to be activated multiple times. The computational com-
plexity drastically increases because of this multiple activation property, e.g., compared
with the susceptiblénfectedrecovered (SIR) modelhere once activated nodes can
never be deactivatgeactivated. We addressed the problem fatiently discovering

the influential nodes under the SIS model, i.e., estimating the expected number of acti-
vated nodes at time-stegor t = 1,--- , T starting from an initially activated node set

H € V at time-stef = 0. We solved this problem by constructing a layered graph from
the original social network by adding each layer on top of the existing layers as the time
proceeds, and applying the bond percolation with a pruning strategy. We showed that
the computational complexity of the proposed method is much smaller than the conven-
tional naive probabilistic simulation method by a theoretical analysis. We applied the
proposed method to twoftierent types of influence maximization problem, i.e. discov-
ering theK most influential nodes that together maximize the expected influence degree
at the time of interest or the expected influence degree over the time span of interest.
Both problems are solved by the greedy algorithm taking advantage of the submodu-
larity of the objective function. We confirmed by applying to two real world networks
taken from blog and Wikipedia data that the proposed method can achieve considerable
reduction of computation time without degrading the accuracy compared with the naive
simulation method, and discover nodes that are more influential than the nodes iden-
tified by the conventional methods based on the various centrality measures. Just as a
key task on biology is to find some important groups of genes or proteins by performing
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biologically plausible simulations over regulatory networks or metabolic pathways, our
proposed method can be a core technique for the discovery of influential persons over
real social networks, which can contribute to a progress on social science.
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