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Abstract. We address the problem of efficiently discovering the influential nodes
in a social network under thesusceptible/infected/susceptible (SIS) model, a diffu-
sion model where nodes are allowed to be activated multiple times. The compu-
tational complexity drastically increases because of this multiple activation prop-
erty. We solve this problem by constructing a layered graph from the original
social network with each layer added on top as the time proceeds, and apply-
ing the bond percolation with pruning and burnout strategies. We experimentally
demonstrate that the proposed method gives much better solutions than the con-
ventional methods that are solely based on the notion of centrality for social net-
work analysis using two large-scale real-world networks (a blog network and a
wikipedia network). We further show that the computational complexity of the
proposed method is much smaller than the conventional naive probabilistic sim-
ulation method by a theoretical analysis and confirm this by experimentation.
The properties of the influential nodes discovered are substantially different from
those identified by the centrality-based heuristic methods.

1 Introduction

Social networks mediate the spread of various information including topics, ideas and
even (computer) viruses. The proliferation of emails, blogs and social networking ser-
vices (SNS) in the World Wide Web accelerates the creation of large social networks.
Therefore, substantial attention has recently been directed to investigating information
diffusion phenomena in social networks [1–3].

Overall, finding influential nodes is one of the most central problems in social net-
work analysis. Thus, developing methods to do this on the basis of information diffusion
is an important research issue. Widely-used fundamental probabilistic models of infor-
mation diffusion are theindependent cascade (IC) modeland thelinear threshold (LT)
model[4, 5]. Researchers investigated the problem of finding a limited number of influ-
ential nodes that are effective for the spread of information under the above models [4,
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6]. This combinatorial optimization problem is called theinfluence maximization prob-
lem. Kempe et al. [4] experimentally showed on large collaboration networks that the
greedy algorithm can give a good approximate solution to this problem, and mathe-
matically proved a performance guarantee of the greedy solution (i.e., the solution ob-
tained by the greedy algorithm). Recently, methods based on bond percolation [6] and
submodularity [7] were proposed for efficiently estimating the greedy solution. The in-
fluence maximization problem has applications in sociology and “viral marketing” [3],
and was also investigated in a different setting (a descriptive probabilistic model of in-
teraction) [8, 9]. The problem has recently been extended to influence control problems
such as a contamination minimization problem [10].

The IC model can be identified with the so-calledsusceptible/infected/recovered
(SIR) modelfor the spread of a disease [11, 5]. In the SIR model, only infected individ-
uals can infect susceptible individuals, while recovered individuals can neither infect
nor be infected. This implies that an individual is never infected with the disease mul-
tiple times. This property holds true for the LT model as well. However, there exist
phenomena for which the property does not hold. For example, consider the follow-
ing propagation phenomenon of a topic in the blogosphere: A blogger who has not yet
posted a message about the topic is interested in the topic by reading the blog of a friend,
and posts a message about it (i.e., becoming infected). Next, the same blogger reads a
new message about the topic posted by some other friend, and may post a message
(i.e., becoming infected) again. Most simply, this phenomenon can be modeled by an
susceptible/infected/susceptible (SIS) modelfrom the epidemiology. Like this example,
there are many examples of information diffusion phenomena for which the SIS model
is more appropriate, including the growth of hyper-link posts among bloggers [2], the
spread of computer viruses without permanent virus-checking programs, and epidemic
disease such as tuberculosis and gonorrhea [11].

We focus on an information diffusion process in a social networkG = (V,E) over
a given time spanT on the basis of an SIS model. Here, the SIS model is a stochastic
process model, and theinfluenceof a set of nodesH at time-stept,σ(H, t), is defined as
the expected number of infected nodes at time-stept when all the nodes inH are initially
infected at time-stept = 0. We refer toσ as theinfluence functionfor the SIS model.
Developing an effective method for estimatingσ({v}, t), (v ∈ V, t = 1, . . . , T) is vital for
various applications. Clearly, in order to extract influential nodes, we must estimate the
value ofσ({v}, t) for every nodev and time-stept. Thus, we proposed a novel method
based on the bond percolation with an effective pruning strategy to efficiently estimate
{σ({v}, t); v ∈ V, t = 1, . . . , T} for the SIS model in our previous work [12].

In this paper, we consider solving the influence maximization problems on a net-
work G = (V,E) under the SIS model. Here, unlike the cases of the IC and the LT
models, we define two influence maximization problems, thefinal-time maximization
problemand theaccumulated-time maximization problem, for the SIS model. We intro-
duce the greedy algorithm for solving the problems according to the work of Kempe et
al. [4] for the IC and the LT models. Now, let us consider the problem of influence max-
imization at the final time stepT (i.e., final-time maximization problem) as an example.
We then note that for solving this problem by the greedy algorithm, we need a method
for not only evaluating{σ({v},T); v ∈ V}, but also evaluating themarginal influence



Discovering Influential Nodes for SIS models in Social Networks 3

gains{σ(H ∪ {v},T) − σ(H,T); v ∈ V \ H} for any non-empty subsetH of V. Needless
to say, we can naively estimate the marginal influence gains for any non-empty subset
H of V by simulating the SIS model2. However, this naive simulation method is overly
inefficient and not practical at all. In this paper, by incorporating the new techniques
(the pruning and the burnout methods) into the bond percolation method, we propose
a method to efficiently estimate the marginal influence gains for any non-empty subset
H of V, and apply it to approximately solve the two influence maximization problems
for the SIS model by the greedy alogrithm. We show that the proposed method is ex-
pected to achieve a large reduction in computational cost by theoretically comparing
computational complexity with other more naive methods. Further, using two large real
networks, we experimentally demonstrate that the proposed method is much more ef-
ficient than the naive greedy method based on the bond percolation method. We also
show that the discovered nodes by the proposed method are substantially different from
and can result in considerable increase in the influence over the conventional methods
that are based on the notion of various centrality measures.

2 Information Di ffusion Model

Let G = (V,E) be a directed network, whereV andE (⊂ V × V) stand for the sets of all
the nodes and (directed) links, respectively. For anyv ∈ V, letΓ(v; G) denote the set of
the child nodes (directed neighbors) ofv, that is,

Γ(v; G) = {w ∈ V; (v,w) ∈ E}.

2.1 SIS Model

An SIS model for the spread of a disease is based on the cycle of disease in a host. A per-
son is firstsusceptibleto the disease, and becomesinfectedwith some probability when
the person encounters an infected person. The infected person becomes susceptible to
the disease soon without moving to the immune state. We consider a discrete-time SIS
model for information diffusion on a network. In this context, infected nodes mean that
they have just adopted the information, and we call these infected nodesactivenodes.

We define the SIS model for information diffusion onG. In the model, the diffusion
process unfolds in discrete time-stepst ≥ 0, and it is assumed that the state of a node
is either active or inactive. For every link (u, v) ∈ E, we specify a real valuepu,v with
0 < pu,v < 1 in advance. Here,pu,v is referred to as thepropagation probabilitythrough
link (u, v). Given an initial set of active nodesX and a time spanT, the diffusion process
proceeds in the following way. Suppose that nodeu becomes active at time-stept (< T).
Then, nodeu attempts to activate everyv ∈ Γ(u; G), and succeeds with probability
pu,v. If nodeu succeeds, then nodev will become active at time-stept + 1. If multiple
active nodes attempt to activate nodev in time-stept, then their activation attempts
are sequenced in an arbitrary order. On the other hand, nodeu will become or remain
inactive at time-stept + 1 unless it is activated from an active node in time-stept. The
process terminates if the current time-step reaches the time limitT.

2 Note that the method we proposed in [12] does not perform simulation.
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2.2 Influence Function

For the SIS model onG, we consider a diffusion sample from an initially activated node
set H ⊂ V over time spanT. Let S(H, t) denote the set of active nodes at time-step
t. Note thatS(H, t) is a random subset ofV andS(H,0) = H. Let σ(H, t) denote the
expected number of|S(H, t)|, where|X| stands for the number of elements in a setX. We
call σ(H, t) the influenceof node setH at time-stept. Note thatσ is a function defined
on 2|V| × {0,1, · · · ,T}. We call the functionσ the influence functionfor the SIS model
over time spanT on networkG. In view of more complex social influence, we need to
incorporate a number of social factors with social networks such as rank, prestige and
power. In our approach, we can encode such factors as diffusion probabilities of each
node.

It is important to estimate the influence functionσ efficiently. In theory we can
simply estimateσ by the simulations based on the SIS model in the following way.
First, a sufficiently large positive integerM is specified. For eachH ⊂ V, the diffusion
process of the SIS model is simulated from the initially activated node setH, and the
number of active nodes at time-stept, |S(H, t)|, is calculated for everyt ∈ {0,1, · · · ,T}.
Then,σ(H, t) is estimated as the empirical mean of|S(H, t)|’s that are obtained fromM
such simulations. However, this is extremely inefficient, and cannot be practical.

3 Influence Maximization Problem

We mathematically define the influence maximization problems on a networkG= (V,E)
under the SIS model. LetK be a positive integer withK < |V|. First, we define thefinal-
time maximization problem: Find a setH∗K of K nodes to target for initial activation such
thatσ(H∗K ; T) ≥ σ(H; T) for any setH of k nodes, that is, find

H∗K = arg max
{H⊂V; |H|=K}

σ(H; T). (1)

Second, we define theaccumulated-time maximization problem: Find a setH∗K of K
nodes to target for initial activation such thatσ(H∗K ; 1) + · · · + σ(H∗K ; T) ≥ σ(H; 1) +
· · · + σ(H; T) for any setH of k nodes, that is, find

H∗K = arg max
{H⊂V; |H|=K}

T∑
t=1

σ(H; t). (2)

The first problem cares only how many nodes are influenced at the time of interest.
For example, in an election campaign it is only those people who are convinced to vote
the candidate at the time of voting that really matter and not those who were convinced
during the campaign but changed their mind at the very end. Maximizing the number
of people who actually vote falls in this category. The second problem cares how many
nodes have been influenced throughout the period of interest. For example, maximizing
the amount of product purchase during a sales campaign falls in this category.
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4 Proposed Method

Kempe et al. [4] showed the effectiveness of the greedy algorithm for the influence
maximization problem under the IC and LT models. In this section, we introduce the
greedy algorithm for the SIS model, and describe some techniques (the bond percola-
tion method, the pruning method, and the burnout method) for efficiently solving the
influence maximization problem under the greedy algorithm, together with some argu-
ments for evaluating the computational complexity for these methods.

4.1 Greedy Algorithm

We approximately solve the influence maximization problem by the greedy algorithm.
Below we describe this algorithm for the final-time maximization problem:

Greedy algorithm for the final-time maximization problem:
A1. SetH ← ∅.
A2. Fork = 1 to K do the following steps:
A2-1. Choose a nodevk ∈ V \ H maximizingσ(H ∪ {v},T).
A2-2. SetH ← H ∪ {vk}.
A3. OutputH.

Here we can easily modify this algorithm for the accumulated-time maximization prob-
lem by replacing stepA2-1 as follows:

Greedy algorithm for the accumulated-time maximization problem:
A1. SetH ← ∅.
A2. Fork = 1 to K do the following steps:
A2-1’. Choose a nodevk ∈ V \ H maximizing

∑T
t=1σ(H ∪ {v}, t).

A2-2. SetH ← H ∪ {vk}.
A3. OutputH.

Let HK denote the set ofK nodes obtained by this algorithm. We refer toHK as the
greedy solutionof sizeK. Then, it is known that

σ(HK , t) ≥
(
1− 1

e

)
σ(H∗K , t),

that is, the quality guarantee ofHk is assured [4]. Here,H∗k is the exact solution defined
by Equation (1) or (2).

To implement the greedy algorithm, we need a method for estimating all the marginal
influence degrees{σ(H ∪ {v}, t); v ∈ V \ H} of H in stepA2-1 orA2-1’ of the algo-
rithm. In the subsequent subsections, we propose a method for efficiently estimating the
influence functionσ over time spanT for the SIS model on networkG.
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Fig. 1.An example of a layered graph.

4.2 Layered Graph

We build a layered graphGT = (VT ,ET) from G in the following way (see Figure 1).
First, for each nodev ∈ V and each time-stept ∈ {0, 1, · · · ,T}, we generate a copyvt

of v at time-stept. Let Vt denote the set of copies of allv ∈ V at time-stept. We define
VT by VT = V0 ∪ V1 ∪ · · · ∪ VT . In particular, we identifyV with V0. Next, for each
link (u, v) ∈ E, we generateT links (ut−1, vt), (t ∈ {1, · · · ,T}), in the set of nodesVT .
We setEt = {(ut−1, vt); (u, v) ∈ E}, and defineET by ET = E1 ∪ · · · ∪ ET . Moreover, for
any link (ut−1, vt) of the layered graphGT , we define the occupation probabilityqut−1,vt

by qut−1,vt = pu,v.

Then, we can easily prove that the SIS model with propagation probabilities{pe; e ∈
E} on G over time spanT is equivalent to thebond percolation process (BP) with
occupation probabilities{qe; e ∈ ET} on GT .3 Here, the BP process with occupation
probabilities{qe; e ∈ ET} on GT is the random process in which each linke ∈ ET

is independently declared “occupied” with probabilityqe. We perform the BP process
on GT , and generate a graph constructed by occupied links,G̃T = (VT , ẼT). Then, in
terms of information diffusion by the SIS model onG, an occupied link (ut−1, vt) ∈ Et

represents a link (u, v) ∈ E through which the information propagates at time-stept,
and an unoccupied link (ut−1, vt) ∈ Et represents a link (u, v) ∈ E through which the
information does not propagate at time-stept. For anyv ∈ V \ H, let F(H ∪ {v}; G̃T)
be the set of all nodes that can be reached fromH ∪ {v} ∈ V0 through a path on the
graphG̃T . When we consider a diffusion sample from an initial active nodev ∈ V for
the SIS model onG, F(H ∪ {v}; G̃T) ∩ Vt represents the set of active nodes at time-step
t, S(H ∪ {v}, t).

3 The SIS model over time spanT on G can be exactly mapped onto the IC model onGT [4].
Thus, the result follows from the equivalence of the BP process and the IC model [11, 4, 6].
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4.3 Bond Percolation Method

Using the equivalent BP process, we present a method for efficiently estimating influ-
ence functionσ. We refer to this method as theBP method. Unlike the naive method,
the BP method simultaneously estimatesσ(H ∪ {v}, t) for all v ∈ V \ H. Moreover, the
BP method does not fully perform the BP process, but performs it partially. Note first
that all the paths from nodesH ∪ {v} (v ∈ V \ H) on the graphG̃T represent a diffusion
sample from the initial active nodesH ∪ {v} for the SIS model onG. Let L′ be the set
of the links inGT that is not in the diffusion sample. For calculating|S(H ∪ {v}, t)|, it
is unnecessary to determine whether the links inL′ are occupied or not. Therefore, the
BP method performs the BP process for only an appropriate set of links inGT . The BP
method estimatesσ by the following algorithm:

BP method:
B1. Setσ(H ∪ {v}, t)← 0 for eachv ∈ V \ H andt ∈ {1, · · · ,T}.
B2. Repeat the following procedureM times:
B2-1. Initialize S(H ∪ {v},0) = H ∪ {v} for eachv ∈ V \ H, and setA(0) ← V \ H,

A(1)← ∅, · · · , A(T)← ∅.
B2-2. For t = 1 toT do the following steps:
B2-2a. ComputeB(t − 1) =

∪
v∈A(t−1) S(H ∪ {v}, t − 1).

B2-2b. Perform the BP process for the links fromB(t−1) inGT , and generate the graph
G̃t constructed by the occupied links.

B2-2c. For eachv ∈ A(t − 1), computeS(H ∪ {v}, t) = ∪
w∈S(H∪{v},t−1)Γ(w; G̃t), and set

σ(H∪{v}, t)← σ(H∪{v}, t) + |S(H∪{v}, t)| andA(t)← A(t)∪{v} if S(H∪{v}, t) , ∅.
B3. For eachv ∈ V \ H andt ∈ {1, · · · ,T}, setσ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M, and

outputσ(H ∪ {v}, t).

Note thatA(t) finally becomes the set of information source nodes that have at least an
active node at time-stept, that is,A(t) = {v ∈ V \ H; S(H ∪ {v}, t) , ∅}. Note also that
B(t − 1) is the set of nodes that are activated at time-stept − 1 by some source nodes,
that is,B(t − 1) =

∪
v∈V S(H ∪ {v}, t − 1).

Now we estimate the computational complexity of the BP method in terms of the
number of the nodes,Na, that are identified in stepB2-2a, the number of the coin-flips,
Nb, for the BP process in stepB2-2b, and the number of the links,Nc, that are followed
in stepB2-2c. Letd(v) be the number of out-links from nodev (i.e., out-degree ofv)
andd′(v) the average number of occupied out-links from nodev after the BP process.
Here we can estimated′(v) by

∑
w∈Γ(v;G) pv,w. Then, for each time-stept ∈ {1, · · · ,T},

we have

Na =
∑

v∈A(t−1)

|S(H∪{v}, t−1)|, Nb =
∑

w∈B(t−1)

d(w), Nc =
∑

v∈A(t−1)

∑
w∈S(H∪{v},t−1)

d′(w) (3)

on average.
In order to compare the computational complexity of the BP method to that of the

naive method, we consider mapping the naive method onto the BP framework, that is,
separating the coin-flip process and the link-following process. We can easily verify
that the following algorithm in the BP framework is equivalent to the naive method:
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A method that is equivalent to the naive method:
B1. Setσ(H ∪ {v}, t)← 0 for eachv ∈ V \ H andt ∈ {1, · · · ,T}.
B2. Repeat the following procedureM times:
B2-1. Initialize S(H ∪ {v},0) = H ∪ {v} for eachv ∈ V \ H, and setA(0) ← V \ H,

A(1)← ∅, · · · , A(T)← ∅.
B2-2. For t = 1 toT do the following steps:
B2-2b’. For eachv ∈ A(t−1), perform the BP process for the links fromS(H∪{v}, t−1)

in GT , and generate the graph̃Gt(v) constructed by the occupied links.
B2-2c’. For eachv ∈ A(t−1), computeS(H∪{v}; t) =

∪
w∈S(H∪{v},t−1)Γ(w; G̃t(v)), and set

σ(H∪{v}, t)← σ(H∪{v}, t)+ |S(H∪{v}, t)| andA(t)← A(t)∪{v} if S(H∪{v}, t) , ∅.
B3. For eachv ∈ V \ H andt ∈ {1, · · · ,T}, setσ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M, and

outputσ(H ∪ {v}, t).

Then, for eacht ∈ {1, · · · ,T}, the number of coin-flips,Nb′ , in stepB2-2b’ is

Nb′ =
∑

v∈A(t−1)

∑
w∈S(H∪{v},t−1)

d(w), (4)

and the number of the links,Nc′ , followed in stepB2-2c’ is equal toNc in the BP
method on average. From equations (3) and (4), we can see thatNb′ is much larger than
Nc′ = Nc, especially for the case where the diffusion probabilities are small. We can
also see thatNb′ is generally much larger than each ofNa andNb in the BP method for
a real social network. In fact, since such a network generally includes large clique-like
subgraphs, there are many nodesw ∈ V such thatd(w) ≫ 1, and we can expect that∑

v∈A(t−1) |S(H ∪ {v}, t − 1)| ≫ |∪v∈A(t−1) S(H ∪ {v}, t − 1)| (= |B(t − 1)|). Therefore, the
BP method is expected to achieve a large reduction in computational cost.

4.4 Pruning Method

In order to further improve the computational efficiency of the BP method, we introduce
a pruning technique and propose a method referred to as theBP with pruning method.
The key idea of the pruning technique is to utilize the following property: Once we have
S(H ∪ {u}, t0) = S(H ∪ {v}, t0) at some time-stept0 on the course of the BP process for
a pair of information source nodes,u andv, then we haveS(H ∪ {u}, t) = S(H ∪ {v}, t)
for all t > t0. The BP with pruning method estimatesσ by the following algorithm:

BP with pruning method:
B1. Setσ(H ∪ {v}, t)← 0 for eachv ∈ V \ H andt ∈ {1, · · · ,T}.
B2. Repeat the following procedureM times:
B2-1”. Initialize S(H ∪ {v}; 0) = H ∪ {v} for eachv ∈ V \ H, and setA(0) ← V \ H,

A(1)← ∅, · · · , A(T)← ∅, andC(v)← {v} for eachv ∈ V \ H.
B2-2. For t = 1 toT do the following steps:
B2-2a. ComputeB(t − 1) =

∪
v∈A(t−1) S(H ∪ {v}, t − 1).

B2-2b. Perform the BP process for the links fromB(t−1) inGT , and generate the graph
G̃t constructed by the occupied links.

B2-2c”. For eachv ∈ A(t − 1), computeS(H ∪ {v}, t) = ∪
w∈S(H∪{v},t−1)Γ(w; G̃t), set

A(t)← A(t)∪{v} if S(H∪{v}, t) , ∅, and setσ(H∪{u}, t)← σ(H∪{u}, t)+ |S(H∪
{v}, t)| for eachu ∈ C(v).
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B2-2d. Check whetherS(H ∪ {u}, t) = S(H ∪ {v}, t) for u, v ∈ A(t), and setC(v) ←
C(v) ∪C(u) andA(t)← A(t) \ {u} if S(H ∪ {u}, t) = S(H ∪ {v}, t).

B3. For eachv ∈ V \ H andt ∈ {1, · · · ,T}, setσ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M, and
outputσ(H ∪ {v}, t).

Basically, by introducing stepB2-2d and reducing the size ofA(t), the proposed method
attempts to improve the computational efficiency in comparison to the original BP
method. For the proposed method, it is important to implement efficiently the equiva-
lence check process in stepB2-2d. In our implementation, we first classify eachv ∈ A(t)
according to the value ofn = |S(H ∪ {v}, t)|, and then perform the equivalence check
process only for those nodes with the samen value.

4.5 Burnout Method

In order to further improve the computational efficiency of the BP with pruning method,
we additionally introduce a burnout technique and propose a method referred to as
theBP with pruning and burnout method. More specifically, we focus on the fact that
maximizing the marginal influence degreeσ(H ∪ {v}, t) with respect tov ∈ V \ H is
equivalent to maximizing the marginal influence gainϕH(v, t) = σ(H ∪ {v}, t)−σ(H, t).
Here on the course of the BP process for a newly added information source nodev,
maximizingϕH(v, t) reduces to maximizing|S(H ∪ {v}, t) \ S(H, t)| on average. The BP
with pruning and burnout method estimatesϕH by the following algorithm:

BP with pruning and burnout methods:
C1. SetϕH(v, t)← 0 for eachv ∈ V \ H andt ∈ {1, · · · ,T}.
C2. Repeat the following procedureM times:
C2-1. Initialize S(H; 0) = H, andS({v}; 0) = {v} for eachv ∈ V \ H, and setA(0) ←

V \ H, A(1)← ∅, · · · , A(T)← ∅, andC(v)← {v} for eachv ∈ V \ H.
C2-2. For t = 1 toT do the following steps:
C2-2a. ComputeB(t − 1) =

∪
v∈A(t−1) S({v}, t − 1)∪ S(H, t − 1).

C2-2b. Perform the BP process for the links fromB(t−1) inGT , and generate the graph
G̃t constructed by the occupied links.

C2-2c. ComputeS(H, t) =
∪

w∈S(H,t−1)Γ(w; G̃t), and for eachv ∈ A(t − 1), compute
S({v}, t) = ∪

w∈S({v},t−1)Γ(w; G̃t) \ S(H, t), setA(t) ← A(t) ∪ {v} if S({v}, t) , ∅, and
setϕH({u}, t)← ϕH({u}, t) + |S({v}, t)| for eachu ∈ C(v).

C2-2d. Check whetherS({u}, t) = S({v}, t) for u, v ∈ A(t), and setC(v) ← C(v) ∪C(u)
andA(t)← A(t) \ {u} if S({u}, t) = S({v}, t).

C3. For eachv ∈ V \ H and t ∈ {1, · · · ,T}, setϕH({v}, t) ← ϕH({v}, t)/M, and output
ϕH({v}, t).

Intuitively, compared with the BP with pruning method, by using the burnout technique,
we can substantially reduce the size of the active node set fromS(H ∪ {v}, t) to S({v}, t)
for eachv ∈ V\H andt ∈ {1, · · · ,T}. Namely, in terms of computational costs described
by Equation (3), we can expect to obtain smaller numbers forNa andNc whenH , ∅.
However, how effectively the proposed method works will depend on several conditions
such as network structure, time span, values of diffusion probabilities, and so on. We
will do a simple analysis later and experimentally show that it is indeed effective.
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5 Experimental Evaluation

In the experiments, we report our evaluation results on the final-time maximization
problem due to the space limitation.

5.1 Network Data and Settings

In our experiments, we employed two datasets of large real networks used in [10], which
exhibit many of the key features of social networks.

The first one is a trackback network of Japanese blogs. The network data was col-
lected by tracing the trackbacks from one blog in the site “goo (http://blog.goo.ne.jp/)”
in May, 2005. We refer to the network data as the blog network. The blog network was
a strongly-connected bidirectional network, where a link created by a trackback was
regarded as a bidirectional link since blog authors establish mutual communications
by putting trackbacks on each other’s blogs. The blog network had 12,047 nodes and
79,920 directed links.

The second one is a network of people that was derived from the “list of people”
within Japanese Wikipedia. We refer to the network data as the Wikipedia network. The
Wikipedia network was also a strongly-connected bidirectional network, and had 9,481
nodes and 245,044 directed links.

For the SIS model, we assigned a uniform probabilityp to the propagation proba-
bility pu,v for any link (u, v) ∈ E, that is,pu,v = p. According to [4, 2], we set the value
of p relatively small. In particular, we set the value ofp to a value smaller than 1/d̄,
whered̄ is the mean out-degree of a network. Since the values ofd̄ were about 6.63 and
25.85 for the blog and the Wikipedia networks, respectively, the corresponding values
of 1/d̄ were about 0.15 and 0.03. We decided to setp = 0.1 for the blog network and
p = 0.01 for the Wikipedia network. Also, for the time spanT, we setT = 30.

For the bond percolation method, we need to specify the numberM of performing
the bond percolation process. According to [12], we setM = 10,000 for estimating
influence degrees for the blog and Wikipedia networks.

All our experimentation was undertaken on a single PC with an Intel Dual Core
Xeon X5272 3.4GHz processor, with 32GB of memory, running under Linux.

5.2 Comparison Methods

First, we compared the proposed method with three heuristics from social network anal-
ysis with respect to the solution quality. They are based on the notions of “degree cen-
trality”, “closeness centrality”, and “betweenness centrality” that are commonly used as
influence measure in sociology [13]. Here, the betweenness of nodev is defined as the
total number of shortest paths between pairs of nodes that pass throughv, the closeness
of nodev is defined as the reciprocal of the average distance betweenv and other nodes
in the network, and the degree of nodev is defined as the number of links attached tov.
Namely, we employed the methods of choosing nodes in decreasing order of these cen-
tralities. We refer to these methods as thebetweenness method, thecloseness method,
and thedegree method, respectively.
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Next, to evaluate the effectiveness of the pruning and the burnout strategies, we
compared the proposed method with the naive greedy method based on the BP method
with respect to the processing time. Hereafter, we refer to the naive greedy method
based on the BP method as the BP method for short.

5.3 Solution Quality Comparison
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Fig. 2.Comparison of solution quality for the blog network.

We first compared the quality of the solutionHK of the proposed method with that
of the betweenness, the closeness, and the degree methods for solving the problem of
the influence maximization at the final time stepT. Clearly, the quality ofHK can be
evaluated by the influence degreeσ(HK ,T). We estimated the value ofσ(HK ,T) by
using the bond percolation method withM = 10,000 according to [12].

Figures 2 and 3 show the influence degreeσ(HK ,T) as a function of the number of
initial active nodesK for the blog and the Wikipedia networks, respectively. In the fig-
ures, the circles, triangles, diamonds, and squares indicate the results for the proposed,
the betweenness, the closeness, and the degree methods, respectively. The proposed
method performs the best for both networks, while the betweenness method follows for
the blog dataset and the degree method follows for the Wikipedeia dataset. Note that
how each of the conventional heuristics performs depends on the characteristics of the
network structure. These results imply that the proposed method works effectively, and
outperforms the conventional heuristics from social network analysis.

It is interesting to note that thek nodes (k = 1,2, ...,K) that are discovered to be
most influential by the proposed method are substantially different from those that are
found by the conventional centrality-based heuristic methods. For example, the best
node (k = 1) chosen by the proposed method for the blog dataset is ranked 118 for the
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Fig. 3.Comparison of solution quality for the Wikipedia network.

betweenness method, 659 for the closeness method and 6 for the degree method, and
the 15th node (k = 15) by the proposed method is ranked 1373, 8848 and 507 for the
corresponding conventional methods, respectively. The best node (k = 1) chosen by the
proposed method for the Wikipedia dataset is ranked 580 for the betweenness method,
2766 for the closeness method and 15 for the degree method, and the 15th node (k = 15)
by the proposed method is ranked 265, 2041, and 21 for the corresponding conventional
methods, respectively. It is hard to find a correlation between these rankings, but for the
smallerk, it appears that degree centrality measure is better than the other centrality
measures, which can be inferred from Figures 2 and 3.

5.4 Processing Time Comparison

Next, we compared the processing time of the proposed method (BP with pruning and
burnout method) with that of the BP method. Letτ(K,T) denote the processing time of
a method for solving the problem of the influece maximization at the final time stepT,
whereK is the number of initial active nodes. Figures 4 and 5 show the processing time
difference∆τ(K,T) = τ(K,T) − τ(K − 1,T) as a function of the number of initial active
nodesK for the blog and the Wikipedia networks, respectively. In these figures, the cir-
cles, and crosses indicate the results for the proposed and the BP methods, respectively.
Note that∆τ(K,T) decreases asK increases for the proposed method, whereas∆τ(K,T)
increases for the BP method. This means that the difference in the total processing time
becomes increasingly larger asK increases. In case of the blog dataset, the total pro-
cessing time forK = 5 is about 2 hours for the proposed method and 100 hours for the
BP methods. Namely, the proposed method is about 50 times faster than the BP method
for K = 5. The same is true for the Wikipedia dataset. The total processing time for
K = 5 is about 0.5 hours for the proposed method and 9 hours the BP methods, and the
proposed method is about 18 times faster than the BP method forK = 5. These results
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Fig. 4.Comparison of processing time for the blog network.

confirm that the proposed method is much more efficient than the BP method, and can
be practical.

6 Discussion

The influence functionσ(·,T) is submodular [4]. For solving a combinatorial optimiza-
tion problem of a submodular functionf on V by the greedy algorithm, Leskovec et
al. [7] have recently presented a lazy evaluation method that leads to far fewer (ex-
pensive) evaluations of the marginal incrementsf (H ∪ {v}) − f (H), (v ∈ V \ H) in the
greedy algorithm forH , ∅, and achieved an improvement in speed. Note here that their
method requires evaluatingf (v) for all v ∈ V at least. Thus, we can apply their method
to the influence maximization problem for the SIS model, where the influence function
σ(·,T) is evaluated by simulating the corresponding random process. It is clear that 1)
this method is more efficient than the naive greedy method that does not employ the
BP method and instead evaluates the influence degrees by simulating the diffusion phe-
nomena, and 2) further the both methods become the same forK = 1 and empirically
estimate the influence functionσ(·,T) by probabilistic simulations. These methods also
requireM to be specified in advance as a parameter, whereM is the number of simula-
tions. Note that the BP and the simulation methods can estimate influence degreeσ(v, t)
with the same accuracy by using the same value ofM (see [12]). Moreover, as shown
in [12], estimating influence functionσ(·,30) by 10,000 simulations needed more than
35.8 hours for the blog dataset and 7.6 hours for the Wikipedia dataset, respectively.
However, the proposed method forK = 30 needed less than 7.0 hours for the blog
dataset and 3.2 hours for the Wikipedia dataset, respectively. Therefore, it is clear that
the proposed method can be faster than the method by Leskovec [7] for the influence
maximization problem for the SIS model.
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Fig. 5.Comparison of processing time for the Wikipedia network.

7 Conclusion

Finding influential nodes is one of the most central problems in the field of social net-
work analysis. There are several models that simulate how various things, e.g., news,
rumors, diseases, innovation, ideas, etc. diffuse across the network. One such realis-
tic model is thesusceptible/infected/susceptible (SIS) model, an information diffusion
model where nodes are allowed to be activated multiple times. The computational com-
plexity drastically increases because of this multiple activation property, e.g., compared
with the susceptible/infected/recovered (SIR) modelwhere once activated nodes can
never be deactivated/reactivated. We addressed the problem of efficiently discovering
the influential nodes under the SIS model, i.e., estimating the expected number of acti-
vated nodes at time-stept for t = 1, · · · ,T starting from an initially activated node set
H ∈ V at time-stept = 0. We solved this problem by constructing a layered graph from
the original social network by adding each layer on top of the existing layers as the time
proceeds, and applying the bond percolation with a pruning strategy. We showed that
the computational complexity of the proposed method is much smaller than the conven-
tional naive probabilistic simulation method by a theoretical analysis. We applied the
proposed method to two different types of influence maximization problem, i.e. discov-
ering theK most influential nodes that together maximize the expected influence degree
at the time of interest or the expected influence degree over the time span of interest.
Both problems are solved by the greedy algorithm taking advantage of the submodu-
larity of the objective function. We confirmed by applying to two real world networks
taken from blog and Wikipedia data that the proposed method can achieve considerable
reduction of computation time without degrading the accuracy compared with the naive
simulation method, and discover nodes that are more influential than the nodes iden-
tified by the conventional methods based on the various centrality measures. Just as a
key task on biology is to find some important groups of genes or proteins by performing
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biologically plausible simulations over regulatory networks or metabolic pathways, our
proposed method can be a core technique for the discovery of influential persons over
real social networks, which can contribute to a progress on social science.
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