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Abstract. Effective visualization is vital for understanding a complex network,
in particular its dynamical aspect such as information diffusion process. Existing
node embedding methods are all based solely on the network topology and some-
times produce counter-intuitive visualization. A new node embedding method
based on conditional probability is proposed that explicitly addresses diffusion
process using either the IC or LT models as a cross-entropy minimization prob-
lem, together with two label assignment strategies that can be simultaneously
adopted. Numerical experiments were performed on two large real networks, one
represented by a directed graph and the other by an undirected graph. The results
clearly demonstrate the advantage of the proposed methods over conventional
spring model and topology-based cross-entropy methods, especially for the case
of directed networks.

1 Introduction

Analysis of the structure and function of complex networks, such as social, computer
and biochemical networks, has been a hot research subject with considerable atten-
tion [10]. A network can play an important role as a medium for the spread of various
information. For example, innovation, hot topics and even malicious rumors can prop-
agate through social networks among individuals, and computer viruses can diffuse
through email networks. Previous work addressed the problem of tracking the propa-
gation patterns of topics through network spaces [5, 1], and studied effective “vacci-
nation” strategies for preventing the spread of computer viruses through networks [11,
2]. Widely-used fundamental probabilistic models of information diffusion through net-
works are the independent cascade (IC) model and the linear threshold (LT) model [8,
5]. Researchers have recently investigated the problem of finding a limited number of
influential nodes that are effective for the spread of information through a network un-
der these models [8, 9]. In these studies, understanding the flow of information through
networks is an important research issue.
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This paper focuses on the problem of visualizing the information diffusion process,
which is vital for understanding its characteristic over a complex network. Existing node
embedding methods such as spring model method [7] and cross entropy method [14] are
solely based on the network topology. They do not take account how information dif-
fuses across the network. Thus, it often happens that the visualized information flow do
not match our intuitive understanding, e.g., abrupt information flow gaps, inconsistency
between the nodes distance and the reachability of information, irregular pattern of in-
formation spread, etc. This sometimes happens when visualizing the diffusion process
for a network represented by a directed graph.

Thus, it is important that node embedding explicitly reflects the diffusion process
to produce more natural visualization. We have devised a new node embedding method
that incorporates conditional probability of information diffusion between two nodes, a
target source node where the information is initially issued and a non-target influenced
node where the information has been received via intermediate nodes. Our postulation is
that good visualization should satisfy the two conditions: path continuity, i.e. any infor-
mation diffusion path is continuous and path separability, i.e. each different information
diffusion path is clearly separated from each other. To this end, the above node embed-
ding is coupled with two label assignment strategies, one with emphasis on influence of
initially activated nodes, and the other on degree of information reachability.

Extensive numerical experiments were performed on two large real networks, one
generated from a large connected trackback network of blog data, resulting in a di-
rected graph of 12,047 nodes and 53,315 links, and the other, a network of people,
generated from a list of people within a Japanese Wikipedia, resulting in an undirected
graph of 9,481 nodes and 245, 044 links. The results clearly indicate that the proposed
probabilistic visualization method satisfies the above two conditions and demonstrate
its advantage over the well-known conventional methods: spring model and topology-
based cross-entropy methods, especially for the case of a directed network. The method
appeals well to our intuitive understanding of information diffusion process.

2 Information Diffusion Models

We mathematically model the spread of information through a directed network G =
(V, E) under the IC or LT model, where V and E (C V x V) stands for the sets of all the
nodes and links, respectively. We call nodes active if they have been influenced with
the information. In these models, the diffusion process unfolds in discrete time-steps
t > 0, and it is assumed that nodes can switch their states only from inactive to active,
but not from active to inactive. Given an initial set S of active nodes, we assume that the
nodes in S have first become active at time-step 0, and all the other nodes are inactive
at time-step 0.

2.1 Independent Cascade Model

We define the IC model. In this model, for each directed link (u, v), we specify a real
value 8,, with 0 < B,, < 1 in advance. Here ,, is referred to as the propagation
probability through link (u, v). The diffusion process proceeds from a given initial active
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set S in the following way. When a node u first becomes active at time-step ¢, it is
given a single chance to activate each currently inactive child node v, and succeeds with
probability B, ,. If u succeeds, then v will become active at time-step ¢ + 1. If multiple
parent nodes of v first become active at time-step ¢, then their activation attempts are
sequenced in an arbitrary order, but all performed at time-step r. Whether or not u
succeeds, it cannot make any further attempts to activate v in subsequent rounds. The
process terminates if no more activations are possible.

For an initial active set S, let ¢(S') denote the number of active nodes at the end of
the random process for the IC model. Note that ¢(S) is a random variable. Let o(S)
denote the expected value of ¢(S). We call o(S) the influence degree of S .

2.2 Linear Threshold Model

We define the LT model. In this model, for every node v € V, we specify, in advance, a
weight w,, (> 0) from its parent node u such that

Z wyy <1,

uel'(v)

where I'(v) = {u € V;(u,v) € E}. The diffusion process from a given initial active set
S proceeds according to the following randomized rule. First, for any node v € V, a
threshold 0, is chosen uniformly at random from the interval [0, 1]. At time-step ¢, an
inactive node v is influenced by each of its active parent nodes, u, according to weight
wy,y- If the total weight from active parent nodes of v is at least threshold 6,, that is,

Wy,y >0,
uel;(v)

then v will become active at time-step 7+ 1. Here, I',(v) stands for the set of all the parent
nodes of v that are active at time-step 7. The process terminates if no more activations
are possible.

The LT model is also a probabilistic model associated with the uniform distribution
on [0, I]W‘. Similarly to the IC model, we define a random variable ¢(S ) and its expected
value o(§) for the LT model.

2.3 Influence Maximization Problem

Let K be a given positive integer with K < |V|. We consider the problem of finding a set
of K nodes to target for initial activation such that it yields the largest expected spread
of information through network G under the IC or LT model. The problem is referred
to as the influence maximization problem, and mathematically defined as follows: Find
a subset S* of V with |S*| = K such that 0(S*) > o(S) for every S ¢ V with |S| = K.

For a large network, any straightforward method for exactly solving the influence
maximization problem suffers from combinatorial explosion. Therefore, we approxi-
mately solve this problem. Here, Ux = {uj,--- ,ug} is the set of K nodes to target for
initial activation, and represents the approximate solution obtained by this algorithm.
We refer to Uk as the greedy solution.
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Using large collaboration networks, Kempe et al. [8] experimentally demonstrated
that the greedy algorithm significantly outperforms node-selection heuristics that rely
on the well-studied notions of degree centrality and distance centrality in the sociology
literature. Moreover, the quality of Uk is guaranteed:

o(Ug) = (1 — é) o(S%),

where S} stands for the exact solution to this problem.

To implement the greedy algorithm, we need a method for calculating {o(Uy U {v});
v € V\ U} for 1 <k < K. However, it is an open question to exactly calculate influence
degrees by an efficient method for the IC or LT model [8]. Kimura et al. [9] presented
the bond percolation method that efficiently estimates influence degrees {o(Uy U {v});
v € V'\ Uy). Therefore, we estimate the greedy solution Uk using their method.

3 Visualization Method

We especially focus on visualizing the information diffusion process from the target
nodes selected to be a solution of the influence maximization problem. To this end,
we propose a visualization method that has the following characteristics: 1) utilizing
the target nodes as a set of pivot objects for visualization, 2) applying a probabilistic
algorithm for embedding all the nodes in the networks into an Euclidean space, and
3) varying appearance of the embedded nodes on the basis of two label assignment
strategies. In what follows, we describe some details of the probabilistic embedding
algorithm and the label assignment strategies.

3.1 Probabilistic Embedding Algorithm

Let Uy = {ux : 1 < k < K} C V be a set of target nodes, which maximizes an
expected number of influenced nodes in the network based on an information diffusion
model such as IC or LT. Let v, ¢ Uk be a non-target node in the network, then we
can consider the conditional probability py, = p(v,lux) that a node v, is influenced
when one target node u; alone is set to an initial information source. Here note that
we can regard py, as a binomial probability with respect to a pair of nodes u; and v,,.
In our visualization approach, we attempt to produce embedding of the nodes so as
to preserve the relationships expressed as the conditional probabilities for all pairs of
target and non-target nodes in the network. We refer to this visualization strategy as the
conditional probability embedding (CE) algorithm.

Objective Function Let {x; : 1 < k < K} and {y, : 1 < n < N} be the embedding
positions of the corresponding K target nodes and N = |V|— K non-target nodes in an M
dimensional Euclidean space. Hereafter, the x; and y, are called target and non-target
vectors, respectively. As usual, we define the Euclidean distance between x; and y, as

follows:
M

din = 1% = Yol = > Ciom = Ym)?.

m=1
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Here, we introduce a monotonic decreasing function p(s) € [0, 1] with respect to s > 0,
where p(0) = 1 and p(o0) = 0.

Since p(dy ) can also be regarded as a binomial probability with respect to x; and
¥n, we can introduce a cross-entropy (cost) function between py , and p(dj,,) as follows:

En = =PinInpdin) = (1 = pra) In(1 = p(dy.n)).

Since &y, is minimized when p(dy ,) = pi.., this minimization with respect to X, and y,
is consistent with our problem setting. In this paper, we employ a function of the form

p(s) = exp(-3)

as the monotonic decreasing function, but note that our approach is not restricted to this
form. Then, the total cost function (objective function) can be defined as follows:

1 LK N K
€=3 Z Z Prntlin = Z Z(l = Pin) In(1 = p(di ) (1)

n=1 k=1 n=1 k=1

Namely, our approach is formalized as a minimization problem of the objective function
defined in (1) with respectto {x; : | <k < K}and{y,: 1 <n < N}.

Learning Algorithm As the basic structure of our learning algorithms, we adopt a
coordinate strategy just like the EM (Expectation-Maximization) algorithm. First, we
adjust the target vectors, so as to minimize the objective function by freezing the non-
target vectors, and then, we adjust the non-target vectors by freezing the target vectors.
These two steps are repeated until convergence is obtained.

In the former minimization step for the CE algorithm, we need to calculate the
derivative of the objective function with respect to x,, as follows:

& = 6_8 — il pk,n_p(dk,n)
% T o 41— p(den)

Since xi (k" # k) disappears in (2), we can update x; without considering the other
target vectors. In the latter minimization step for the CE algorithm, we need to calculate
the following derivative,

(Xt = ¥n)- @)

_ 08 A P — pldia)

== (¥ — X0.
oy L T pldey

Yn

In this case, we update y, by freezing the other non-target vectors. Overall, our algo-
rithm can be summarized as follows:

1. Initialize vectors X, - ,Xg and yq, -+, yn-.
2. Calculate gradient vectors Ey,, - - , Exy-

3. Update target vectors Xy, - - - , Xg.

4. Calculate gradient vectors &y, , - - - , Ey, .
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5. Update non-target vectors yy,- - , yn-
6. Stop if max; ,{[|Ex, I, [1Ey, |1} < €.
7. Return to 2.

Here, a small positive value € controls the termination condition.

3.2 Label Assignment Strategies

In an attempt to effectively understand information diffusion process, we propose two
label assignment strategies, on which the appearance of the embedded target and non-
target nodes depends. The first strategy assigns labels to non-target nodes according to
the standard Bayes decision rule.

Li(v,) = arg llllkgi);({pk,n}

It is obvious that this decision naturally reflects influence of the target nodes. Note
that the target node identification number k corresponds to the order determined by the
greedy method, i.e., [} (uy) = k.

In the second strategy, we introduce the following probability quantization by noting
0 < maxi <<k {pal < 1,

L(v,) = |-log, max {prnt| + 1,

where [x] returns the greatest integer not greater than x, and b stands for the base of
logarithm. To each node belonging to Z = {v, : max;«<x{pr.} = 0}, we assign as the
label the maximum number determined by the nodes not belonging to Z. We believe
that this quantization reasonably reflects the degree of information reachability. Here
note that l(u;) = 1 because it always becomes active at time step ¢t = 0. These labels
are further mapped to colors scales according to some monotonic mapping functions.

4 Experimental Evaluation

4.1 Network Data

In our experiments, we employed two sets of real networks used in [9], which exhibit
many of the key features of social networks. We describe the details of these network
data.

The first one is a trackback network of blogs. Blogs are personal on-line diaries
managed by easy-to-use software packages, and have rapidly spread through the World
Wide Web [5]. Bloggers (i.e., blog authors) discuss various topics by using trackbacks.
Thus, a piece of information can propagate from one blogger to another blogger through
a trackback. We exploited the blog “Theme salon of blogs” in the site “goo” 2, where a
blogger can recruit trackbacks of other bloggers by registering an interesting theme.
By tracing up to ten steps back in the trackbacks from the blog of the theme “JR

2http://blog.goo.ne. jp/usertheme/
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Fukuchiyama Line Derailment Collision”, we collected a large connected trackback
network in May, 2005. The resulting network had 12,047 nodes and 53,315 directed
links, which features the so-called “power-law” distributions for the out-degree and in-
degree that most real large networks exhibit. We refer to this network data as the blog
network.

The second one is a network of people that was derived from the “list of people”
within Japanese Wikipedia. Specifically, we extracted the maximal connected compo-
nent of the undirected graph obtained by linking two people in the “list of people” if
they co-occur in six or more Wikipedia pages. The undirected graph is represented by
an equivalent directed graph by regarding undirected links as bidirectional ones®. The
resulting network had 9, 481 nodes and 245, 044 directed links. We refer to this network
data as the Wikipedia network.

Newman and Park [12] observed that social networks represented as undirected
graphs generally have the following two statistical properties that are different from
non-social networks. First, they show positive correlations between the degrees of ad-
jacent nodes. Second, they have much higher values of the clustering coefficient C than
the corresponding configuration models (i.e., random network models). For the undi-
rected graph of the Wikipedia network, the value of C of the corresponding configura-
tion model was 0.046, while the actual measured value of C was 0.39, and the degrees
of adjacent nodes were positively correlated. Therefore, the Wikipedia network has the
key features of social networks.

4.2 Experimental Settings

In the IC model, we assigned a uniform probability 8 to the propagation probability
Bu.y for any directed link (u,v) of a network, that is, 8,, = 8. We, first, determine the
typical value of S for the blog network, and use it in the experiments. It is known that
the IC model is equivalent to the bond percolation process that independently declares
every link of the network to be “occupied” with probability 5 [10]. Let J denote the
expected fraction of the maximal strongly connected component (SCC) in the network
constructed by the occupied links. Note that J is an increasing function of 5. We focus
on the point S, at which the average rate of change of J, dJ/dp, attains the maximum,
and regard it as the typical value of 8 for the network. Note that S, is a critical point
of dJ/dp, and defines one of the features intrinsic to the network. Figure 1 plots J as a
function of 8. Here, we estimated J using the bond percolation method with the same
parameter value as below [9]. From this figure we experimentally estimated (3, to be 0.2
for the blog network. In the same way, we experimentally estimated S, to be 0.05 for
the Wikipedia network.

In the LT model, we uniformly set weights as follows. For any node v of a network,
the weight w,,, from a parent node u € I'(v) is given by w,,, = 1/|['(v)|.

Once these parameters were set, we estimated the greedy solution Ug = {uy, - - - , ug}
of targets and the conditional probabilities {pi,; 1 < k < K, 1 < n < N} using the bond
percolation method with the parameter value 10, 000 [9]. Here, the parameter represents

3 For simplicity, we call a graph with bi-directional links an undirected graph
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Fig. 1: The fraction J of the maximal SCC as a function of the propagation probability 8

the number of bond percolation processes for estimating the influence degree o(S) of a
given initial active set S.

4.3 Brief Description of Other Visualization Methods used for Comparison

We have compared the proposed method with the two well known methods: spring
model method [7] and standard cross-entropy method [14].

Spring model method assumes that there is a hypothetical spring between each con-
nected node pair and locates nodes such that the distance of each node pair is closest to
its minimum path length at equilibrium. Mathematically it is formulated as minimizing

3).

vi-1 V|
7((X) = Z Z a'u,v(gu,v - ”Xu - XV”)Z, (3)
u=1 v=u+l

where g, is the minimum path length between node u and node v, and «,,, is a spring
constant which is normally set to 1/ (Zgi‘,). Standard cross-entropy method first defines
a similarity p(|x, — x,|[?) = exp(—IIx, — x,|?/2) between the embedding coordinates x,,
and x, and uses the corresponding element a,,, of the adjacency matrix as a measure of
distance between the node pair, and tries to minimize the total cross entropy between
these two. Mathematically it is formulated as minimizing (4).

vi-1 v
Co = )" D7 {—aulogpllix, = %I = (1 = ay) log(1 = pllx = x,IP)},  (4)
u=1 v=u+l

Here, note that we used the same function p as before.
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As is clear from the above formulation, both methods are completely based on graph
topology. They are both non-linear optimization problem and easily solved by a stan-
dard coordinate descent method. Here note that the applicability of the spring model
method and cross-entropy method is basically limitted to undirected networks. Thus, in
order to obtain the embedding results by using these methods we neglected the direction
in the directed blog network and regarded it as undirected one.

4.4 Experimental Results

Two label assignment strategies are independent to each other. They can be used ei-
ther separately or simultaneously. Here, we used a color mapping to both, and thus,
use them separately. The visualization results are shown in four figures, each with six
network figures. In each of these four figures, the left three show the results of the first
visualization strategy (method 1) and the right three the results of the second visualiza-
tion strategy (method 2), and the top two show the results of the proposed method (CE
algorithm), the middle two the results of spring model and the bottom two the results
of the topology-based cross entropy method. The first two figures (Figs. 2 and 3) cor-
responds to the results of blog network and the last two (Figs. 4 and 5) the results of
Wikipedia network. For each, the results of the IC model comes first, followed by the
results of the LT model.

The most influential top ten nodes are chosen as the target nodes, and the rest are all
non-target nodes. In the first visualization strategy, the color of a non-target node indi-
cates which target node is most influential to the node, whereas in the second visualiza-
tion strategy, it indicates how easily the information diffuses from the most influential
target node to reach the node. Note that a non-target node is influenced by multiple tar-
get nodes probabilistically, but here the target with the highest conditional probability
is chosen. Thus, the most influential target node is determined for each non-target node.

Observation of the results of the proposed method (Figs. 2a, 2b, 3a, 3b, 4a, 4b, 5a,
and 5b) indicates that the proposed method has the following desirable characteristics:
1) the target nodes tend to be allocated separately from each other, and from each tar-
get node, 2) the non-target nodes that are most affected by the same target node are
laid out forming a band and 3) the reachability changes continuously from the highest
at the target node to the lowest at the other end of the band. From this observation, it
is confirmed that the two conditions we postulated are satisfied for the both diffusion
models. Observation 2) above, however, needs further clarification. Note that our vi-
sualization does not necessarily cause the information diffusion to neighboring nodes
to be in the form of a line in the embedded space. For example, if there is only one
source (K=1), the information would diffuse concentrically. A node in general receives
information from multiple sources. The fact that the embedding result forms a line, on
the contrary, reveals an important characteristic that little information is coming from
the other sources for the networks we analyzed.

In the proposed method, non-target nodes that are readily influenced are easily iden-
tified, whereas those that are rarely influenced are placed together. Overlapping of the
color well explains the relationship between each target and a non-target node. For ex-
ample, in Figures 3a and 3b it is easily observed that the effect of the target nodes
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5, 2 on non-target nodes interferes with the three bands that are spread from the tar-
get nodes 8, 3, 10, and non-target nodes overlap as they move away from the target
nodes, demonstrating that a simple two-dimensional visualization facilitates how dif-
ferent node groups overlap and how the information flows from different target nodes
interfere each other. The same observation applies for the target nodes 6, 1, 9, 7. On
the contrary, the target node 4 has its own effect separately. A similar argument is pos-
sible for relationship within target nodes. For example, in Figures 2a target nodes 4,
5, 6, 8 are located in relatively near positions compared with the other target nodes.
It is crucial to abstract and visualize the essence of information diffusion by deleting
the unnecessary details (node to node diffusion). A good explanation for the overlap
like the above is not possible by other visualization methods. Further, the visualization
results of both IC and LT models are spatially well balanced. In addition, there are no
significant differences on the results of visualization between the directed network and
undirected network. Both are equally good.

Observation of the results of the spring model (Figs. 2c, 2d, 3c, 3d, 4c, 4d, 5c, and
5d) and the topology-based cross entropy method (Figs. 2e, 2f, 3e, 3f, 4e, 41, Se, and 5f)
reveals the followings. The clear difference of these from the proposed method is that it
is not that easy to locate the target nodes. This is true, in particular, for the spring model.
It is slightly easier for the standard cross-entropy method because the target nodes are
placed in the cluster centers, but clusters often overlap, which makes visualization less
understandable. It is also noted that those nodes with high reachability, i.e., nodes with
red, which should be placed separately due to the influence of different target nodes
are placed in mixture. Further, unlike the proposed method, there is clear difference
between the IC model and the LT model. In the IC model, we can easily recognize non-
target nodes with high reachability, which cover a large portion of the network, whereas
in the LT model, such nodes covering only a small portion are almost invisible in the
network. In contrast, we can easily pick up such non-target nodes with high reachability
even for the LT model in the proposed method.

We observe that the standard cross-entropy method is in general better than the
spring model method in terms of the clarity of separability. The standard cross-entropy
method does better for the IC model than for the LT model, and is comparable to the
proposed method in terms of the clarity of reachability. However, the results of the
standard cross-entropy method (e.g., Fig. 2f) are unintuitive, where the high reacha-
bility non-target nodes are placed away from the target nodes, and some target node
forms several isolated clusters. We believe that this point is an intrinsic limitation of the
standard cross-entropy method.

The concept of our visualization is based on the notion that how the information
diffuses should primarily determine how the visualization is made, irrespective of the
graph topology. We observe that the visualization which is based solely on the topol-
ogy has intrinsic limitation when we deal with a huge network from the point of both
computational complexity (e.g., the spring model does not work for a network with mil-
lions nodes) and understandability. Overall, we can conclude that the proposed method
provides better visualization which is more intuitive and easily understandable.
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5 Related Work and Discussion

As defined earlier, let K and N be the numbers of target and non-target nodes in a
network. Then the computational complexity of our embedding method amounts to
O(NK), where we assume the number of learning iterations and the embedding di-
mension to be constants. This reduced complexity greatly expands the applicability of
our method over the other representative network embedding methods, e.g., the spring
model method [7] and the standard cross-entropy method [14], both of which require
the computational complexity of O(N?) under the setting that K < N.

In view of computational complexity, our visualization method is closely related to
those conventional methods, such as FastMap or Landmark Multidimensional Scaling
(LMDS), which are based on the Nystrom approximation [13]. Typically, these meth-
ods randomly select a set of pivot (or landmark) objects, then produce the embedding
results so as to preserve relationships between all pairs of pivot and non-pivot objects.
In contrast, our method selects target (pivot) nodes based on the information diffusion
models.

Our method adopts the basic idea of the probabilistic embedding algorithms includ-
ing Parametric Embedding (PE) [6] and Neural Gas Cross-Entropy (NG-CE) [4]. The
PE method attempts to uncover classification structures by use of posterior probabili-
ties, while the NG-CE method is restricted to visualize the codebooks of the neural gas
model. Our purpose, on the other hand, is to effectively visualize information diffusion
process. The two visualization strategies we proposed match this aim.

We are not the first to try to visualize the information diffusion process. Adar and
Adamic [1] presented a visualization system that tracks the flow of URL through blogs.
However, same as above, their visualization method did not incorporate an information
diffusion model. Further, they laid out only a small number of nodes in a tree structure,
and it is unlikely that their approach scales up to a large network.

Finally we should emphasize that unlike most representative embedding methods
for networks [3], our visualization method is applicable to large-scale directed graphs
while incorporating the effect of information diffusion models. In this paper, however,
we also performed our experiments using the undirected (bi-directional) Wikipedia net-
work. This is because we wanted to include favorable evaluation for the comparison
methods. As noted earlier, we cannot directly apply the conventional embedding meth-
ods to directed graphs without some topology modification such as link addition or
deletion.

6 Conclusion

We proposed an innovative probabilistic visualization method to help understand com-
plex network. The node embedding scheme in the method, formulated as a model-based
cross-entropy minimization problem, explicitly take account of information diffusion
process, and therfore, the resulting visualization is more intuitive and easier to under-
stand than the state-of-art approaches such as the spring model method and the standard
cross-entropy method. Our method is efficient enough to be applied to large networks.
The experiments performed on a large blog network (directed) and a large Wikipedia
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network (undirected) clearly demonstrate the advantage of the proposed method. The
proposed method is confirmed to satisfy both path continuity and path separability con-
ditions which are the important requirement for the visualization to be understandable.
Our future work includes the extension of the proposed approach to the visualization of
growing networks.
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Fig. 2: Visualization of IC model for blog network
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(d) Spring model method 2

(e) Toplogy-based cross-entropy method 1 (f) Toplogy-based cross-entropy method 2
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Fig. 3: Visualization of LT model for blog network
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Fig. 4: Visualization of IC model for Wikipedia network
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(e) Toplogy-based cross-entropy method 1 (f) Toplogy-based cross-entropy method 2
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(g) Class-label assignment (h) Color-map assignment

Fig. 5: Visualization of LT model for Wikipedia network



