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Abstract

We consider the combinatorial optimization problem of find-
ing the most influential nodes on a large-scale social network
for two widely-used fundamental stochastic diffusion models.
It was shown that a natural greedy strategy can give a good
approximate solution to this optimization problem. However,
a conventional method under the greedy algorithm needs a
large amount of computation, since it estimates the marginal
gains for the expected number of nodes influenced by a set
of nodes by simulating the random process of each model
many times. In this paper, we propose a method of efficiently
estimating all those quantities on the basis of bond percola-
tion and graph theory, and apply it to approximately solving
the optimization problem under the greedy algorithm. Us-
ing real-world large-scale networks including blog networks,
we experimentally demonstrate that the proposed method can
outperform the conventional method, and achieve a large re-
duction in computational cost.

Introduction
A social network is the network of relationships and inter-
actions among social entities such as indivisuals, groups of
indivisuals, and organizations. Since the rise of the Inter-
net and the World Wide Web has enabled us to investigate
large-scale social networks, there has been growing inter-
est in social network analysis (Newman 2001; McCallum,
Corrada-Emmanuel, & Wang 2005; Leskovec, Adamic, &
Huberman 2006).

Since a piece of information can propagate from one node
to another node through a link on a social network in the
form of “word-of-mouth” communication, it is an important
research issue to find influencial nodes for the spread of in-
formation through a network represented by a directed graph
in terms of sociology and “viral marketing”. In fact, re-
searchers have recently studied a combinatorial optimization
problem called the influence maximization problem (Domin-
gos & Richardson 2001; Richardson & Domingos 2002;
Kempe, Kleinberg, & Tardos 2003). This is the problem
of extracting a set of k nodes to target for initial activation
such that it yields the largest expected spread of information
for a given integer k. To consider this optimization prob-
lem, a model for the process by which a certain information
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propagates on a social network must be specified. In this
paper, we examine the influence maximization problem for
two widely-used fundamental information diffusion models,
the independent cascade (IC) model (Goldenberg, Libai, &
Muller 2001; Kempe, Kleinberg, & Tardos 2003; Gruhl et
al. 2004) and the linear threshold (LT) model (Watts 2002;
Kempe, Kleinberg, & Tardos 2003).

Kempe, Kleinberg, and Tardos (2003) experimentally
showed on large collaboration networks that for the in-
fluence maximization problem in the IC and LT models,
the greedy hill-climbing algorithm significantly outperforms
the high-degree and centrality heuristics that are commonly
used in the sociology literature. Moreover, they mathemat-
ically proved a performance guarantee of this greedy algo-
rithm for these diffusion models by using an analysis frame-
work based on submodular functions. The greedy algorithm
requires computing the vector ∇σ(A) that consists of all the
marginal gains for the influence degree σ(A) given a set A of
nodes. Here, the IC and LT models have stochastic nature,
and σ(A) is defined as the expected number of nodes influ-
enced by the nodes in A. However, it is an open question to
compute influence degrees exactly by an efficient method,
and so good estimates were obtained by simulating the ran-
dom process of each model many times. Thus, solving the
influence maximization problem under the greedy algorithm
needed a large amount of computation.

In this paper, we propose a method of efficiently estimat-
ing all the marginal gains ∇σ(A) for influece degree σ(A)
on the basis of bond percolation and graph theory, and ap-
ply it to approximately solving the influence maximization
problem under the greedy algorithm. Using real large-scale
networks including blog networks, we experimentally eval-
uate the effectiveness of the proposed method. We finally
discuss some related work and set out the conclusion.

Preliminaries
First, we recall some basic notions from graph theory. Next,
we define the IC and LT models. Moreover, we define the in-
fluence maximization problem, and describe the greedy hill-
climbing algorithm for solving the problem.

Graphs
A directed graph G is a pair (V,E), where V is a set of
nodes (or vertices) and E ⊂ V × V is a set of directed links
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(or edges). If there is a directed link (u, v) from node u to
node v, node v is called a child of node u and node u is
called a parent of node v. For a subset V ′ of V , graph G′ =
(V ′, E′) is called the induced graph of G to V ′ if E′ = E ∩
(V ′ × V ′).

We call (u0, · · ·, u�) a path from node u0 to node u� if we
have (ui−1, ui) ∈ E (i = 1, · · · , �). We say that node u can
reach node v or node v is reachable from node u if there is
a path from node u to node v. For a node v of the graph G,
we define F (v;G) to be the set of nodes that are reachable
from v, and define B(v;G) to be the set of nodes that can
reach v. For A ⊂ V , we set

F (A;G) =
⋃
v∈A

F (v;G), B(A;G) =
⋃
v∈A

B(v;G).

A strongly connected component (SCC) of G is a maximal
subset C of V such that for all u, v ∈ C there is a path from
u to v. For a node v of G, we define SCC(v;G) to be the
SCC that contains v.

Fundamental Diffusion Models
Throughout this paper, we discuss the spread of a certain
information through a social network represented by a di-
rected graph G = (V,E). We call nodes active if they have
accepted the information. Let N denote the number of nodes
in V , and L denote the number of links in E. Let Γ(v) de-
note the set of parent nodes of v ∈ V .

According to the work of Kempe, Kleinberg, and Tardos
(2003), we define the IC and LT models on G. In these
models, the diffusion processes unfold in discrete time-steps
t ≥ 0, and it is assumed that nodes can switch from being
inactive to being active, but cannot switch from being active
to being inactive. Given an initial set A of active nodes, we
assume that the nodes in A have first become active at step
0, and all the other nodes are inactive at step 0.

Independent Cascade Model First, we define the IC
model. In this model, we must specify a real value pu,v ∈
[0, 1] for each directed link (u, v) in advance. Here, pu,v

is referred to as the propagation probability through link
(u, v). When an initial set A of active nodes is given, the
diffusion process proceeds in the following way. When node
u first becomes active at step t, it is given a single chance to
activate each currently inactive child v, and succeeds with
probability pu,v . If u succeeds, then v will become active at
step t+1. If multiple parents of v first become active at step
t, then their activation attempts are sequenced in an arbitrary
order, but performed at step t. Whether or not u succeeds, it
cannot make any further attempts to activate v in subsequent
rounds. The process terminates if no more activations are
possible.

For an initial active set A, let σ(A) denote the expected
number of active nodes at the end of the random process in
the IC model. We call σ(A) the influence degree of target
set A.

Linear Thresholod Model Next, we define the LT model.
In this model, for any node v ∈ V , we must specify
a weight wu,v (> 0) from its parent node u such that∑

u∈Γ(v) wu,v ≤ 1. When an initial set A of active nodes is

given, and a threshold θv of each node v is chosen uniformly
at random from the interval [0, 1], the diffusion process de-
terministically proceeds in the following way. A node v that
is inactive at step t is influenced by each parent u that is ac-
tive at step t according to weight wu,v . Let Γt(v) denote the
set of parent nodes of v that are active at step t. If the to-
tal weight from active parents is at least threshold θv , that is,∑

u∈Γt(v) wu,v ≥ θv, then v will become active at step t+1.
The process terminates if no more activations are possible.

Note that the threshold θv models the tendency of node
v to accept the information when its parents do. Since it
is generally difficult to specify such thresholds for a real-
world network in advance, we choose them randomly. When
we estimate the influence of a target set, we average over
possible threshold values for all the nodes. Therefore, we
regard the LT model as a stochastic model associated with
the uniform distribution on [0, 1]

N .
Suppose that A is an initial set of active nodes. Let σ(A)

denote the expected number of final active nodes for the ran-
dom process from A under the LT model. We call σ(A) the
influence degree of target set A.

Influence Maximization Problem
We investigate the influence maximization problem for the
IC and LT models. The problem is defined as follows: Given
a positive integer k, find a set A∗

k of k nodes to target for
initial activation such that σ(A∗

k) ≥ σ(B) for any set B of
k nodes. To approximately solve this optimization problem,
we consider the following greedy hill-climbing algorithm:

1. Set A ← ∅.

2. for i = 1 to k do
3. Choose a node vi ∈ V maximizing σ(A ∪ {v}).

4. Set A ← A ∪ {vi}.

5. end for
Let Ak denote the set of k nodes obtained by this algorithm.
Then, it is known that σ(Ak) ≥ (1 − 1/e) σ(A∗

k), that is,
a performance guarantee of the approximate solution Ak is
obtained (Kempe, Kleinberg, & Tardos 2003).

To implement this greedy algorithm, we need a method of
evaluating the N -dimensional vector ∇σ(A),

∇σ(A) = (σ(A ∪ {v}))v∈V ∈ R
N ,

that consists of all the marginal gains for influence degree
σ(A). Since it is not clear how to evaluate ∇σ(A) exactly
by an efficient method, a good estimate was conventionally
obtained by simulating the random process of each model
many times (Kempe, Kleinberg, & Tardos 2003). However,
as shown in the experiments, the greedy algorithm based on
this estimation method of ∇σ(A) needs a large amount of
computation for solving the influence maximization prob-
lem on a large-scale network.

Proposed Method
We propose a method of efficiently estimating ∇σ(A) for A
⊂ V on the basis of bond percolation and graph theory, and
practically solve the influence maximization problem on G
= (V,E) under the greedy hill-climbing algorithm.
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Bond Percolation
A bond percolation process on G is the process in which
each link of G is randomly designated either “occupied ”
or “unoccupied” according to some probability distribution.
Let us consider the following set of L-dimensional vectors,

RG =
{

r = (ru,v)(u,v)∈E
∈ {0, 1}L

}
.

A bond percolation process on G is determined by a prob-
ability distribution q on RG. Namely, for a random vector
r ∈ RG drawn from q, each link (u, v) ∈ E is designated
“occupied” if ru,v = 1, and it is designated “unoccupied”
if ru,v = 0. Let Er denote the set of occupied links for
r ∈ RG, and let Gr denote the graph (V,Er). For each
r ∈ RG, we can consider the deterministic diffusion model
Mr on Gr such that F (A;Gr) becomes the final set of ac-
tive nodes when A is an initial set of active nodes. By as-
sociating the diffusion model Mr on Gr with a probability
distribution q on RG, we define a stochastic diffusion model
on G. We call this diffusion model the bond percolation
model on G, and refer the probability distribution q on RG

to as the occupation probability distribution of the model.
We easily see that the IC model on G can be identi-

fied with the so-called susceptible/infective/recovered (SIR)
model (Newman 2003) for the spread of a disease on G,
where the nodes that have just become active at step t in
the IC model correspond to the infective nodes at step t in
the SIR model. It is known that the SIR model on a net-
work can be exactly mapped onto a bond percolation model
on the same network (Newman 2002; 2003). Hence, we see
that the IC model on G is equivalent to some bond perco-
lation model on G, that is, these two models have the same
probability distribution for the final set of active nodes given
a target set. Here, for the IC model on G, the occupation
probability distribution q of the corresponding bond perco-
lation model is given by

q(r) =
∏

(u,v)∈E

{
(pu,v)

ru,v (1 − pu,v)
1−ru,v

}
(r ∈ RG),

that is, each link (u, v) of G is independently declared to be
“occupied” with probability pu,v . Here, pu,v is the propaga-
tion probability through link (u, v) in the IC model.

On the other hand, to derive the result that the influece
degree function σ is submodular in the LT model, Kempe,
Kleinberg, and Tardos (2003) essentially proved that the LT
model on G can also be equivalent to some bond percolation
model on G. Here, for the LT model on G, the correspond-
ing occupation probability distribution q is generated by
declaring “occupied” and “unoccupied” links in the follow-
ing way: For any v ∈ V , we pick at most one of the incom-
ing links to v by selecting link (u, v) with probability wu,v

and selecting no link with probability 1 −
∑

u∈Γ(v) wu,v .
After this process, the picked links are declared to be “occu-
pied” and other links are declared to be “unoccupied”. Here,
wu,v is the weight of link (u, v) in the LT model.

Estimation Method
Now, we present a method of efficiently estimating all the
marginal gains ∇σ(A) for the influence degree σ(A) of tar-
get set A ⊂ V under the IC and LT models. As shown in

the preceding section, the IC and LT models on G can be
identified with bond percolation models on G. Therefore,
we have

σ(A ∪ {v}) =
∑

r∈RG

q(r) |F (A ∪ {v};Gr)|

for any v ∈ V , where q is the corresponding occupation
probability distribution, and |S| denotes the number of el-
ements in a subset S of V . For a sufficiently large pos-
itive integer M , let {r1, · · · , rM} be a set of sample vec-
tors drawn independently from the probability distribution
q on RG. Then, we can approximate the influence degree
σ(A ∪ {v}) for v ∈ V by

σ(A ∪ {v}) �
1

M

M∑
m=1

|F (A ∪ {v};Grm
)|. (1)

Basically, we consider estimating ∇σ(A) by using Equa-
tion (1). To estimate it more efficiently, we propose an al-
gorithm of evaluating simultaneously all the influence sizes
{|F (A ∪ {v};Grm

)|; v ∈ V } for each graph Grm
. One

of the key ideas is to apply a symbolic algorithm for SCC
decomposition (Xie & Beerel 2000).

To evaluate {|F (A∪ {v};Gr)|; v ∈ V } for an arbitrary r
∈ RG, we use the following algorithm:

1. Compute the subset F (A;Gr) of V .

2. Set |F (A ∪ {v};Gr)| ← |F (A;Gr)| for an arbitrary v ∈
F (A;Gr).

3. Set U ← ∅.

4. Compute the subset V A
r = V \ F (A;Gr) of V , and the

induced graph GA
r of Gr to V A

r .

5. while V A
r \ U �= ∅ do

6. Pick a node u ∈ V A
r \ U .

7. Compute the subset F (u;GA
r ) of V A

r .

8. Compute the subset C(u;GA
r ) = B(F (u;GA

r );GA
r ) ∩

F (u;GA
r ) of F (u;GA

r ).

9. Set |F (A ∪ {v};Gr)| ← |F (u;GA
r )| + |F (A;Gr)| for

an arbitrary v ∈ C(u;GA
r ).

10. Set U ← U ∪ C(u;GA
r ).

11. end while

In this algorithm, we attempt to achieve a reduction in
computational cost by exploiting the following facts. First,
in Step 2, we use the fact that if v ∈ F (A;Gr), the set F (A∪
{v};Gr) that is reachable from A ∪ {v} is equal to the set
F (A;Gr). Next, from Step 4 to Step 11, we use the fact
that if v /∈ F (A;Gr), the influence size |F (A ∪ {v};Gr)|
is obtained by the sum of |F (A;Gr)| and |F (v;GA

r )|. This
fact enables us to reduce the graph in question from Gr to
GA

r . In Step 8, we note that the set C(u;GA
r ) is equal to the

SCC SCC(u;GA
r ) that contains u. Moreover, in Step 9, we

use the fact if node v belongs to the same SCC C(u;GA
r ) as

node u, the influnce size of v on graph GA
r is equal to that

of u, that is, |F (v;GA
r )| = |F (u;GA

r )|.
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Experimental Evaluation
Using real large-scale networks, we experimentally evalu-
ated the performance of the proposed method for solving
the influence maximization problem in the IC and LT mod-
els under the greedy hill-climbing algorithm.

Network Dataset
In the evaluation experiments, we should desirably use
large-scale networks that exhibit many of the key features
of real social networks. Here, we report on the experimental
results for two different datasets of such real networks.

First, we employed a trackback network of blogs, since
a piece of information can propagate from one blog author
to another blog author through a trackback. By tracing ten
steps ahead the trackbacks from the blog of the theme “JR
Fukuchiyama Line Derailment Collision” in the site “goo”
(http://blog.goo.ne.jp/usertheme/), we col-
lected a large connected trackback network in May, 2005.
This network was a directed graph of 12, 047 nodes and
53, 315 links, and showed the so-called “power-law” distri-
butions for the out-degree and in-degree that most real large
networks exhibit. Here, the out-degree and in-degree distri-
butions are the distributions of the number of outgoing and
incoming links for every node, respectively. We call this
network data the blog dataset.

Next, we employed a network of people that was derived
from the “list of people” within Japanese Wikipedia. Specif-
ically, we extracted the maximal connected component of
the undirected graph obtained by linking two people in the
“list of people” if they co-occur in six or more Wikipedia
pages, and constructed a directed graph by regarding those
undirected links as bidirectional ones. We call this network
data as the Wikipedia dataset. Here, the total numbers of
nodes and directed links were 9, 481 and 245, 044, respec-
tively.

Newman and Park (2003) observed that social networks
represented as undirected graphs generally have the follow-
ing two statistical properties unlike non-social networks.
First, they show positive correlations between the degrees of
adjacent nodes. Second, they have much higer values of the
clustering coefficient than the corresponding configuration
models (i.e., random network models). Here, the clustering
coefficient C for an undirected graph is defined by

C =
3 × number of triangles on the graph
number of connected triples of nodes

,

where a “triangle” means a set of three nodes each of which
is connected to each of the others, and a “connected triple”
means a node connected directly to an unordered pair of oth-
ers. Note that in terms of sociology, C measures the prob-
ability that two of your friends will also be friends of one
another. Given a degree distribution, the corresponding con-
figuration model of random network is defined as the en-
semble of all possible graphs that possess the degree distri-
bution, with each having equal weight. The value of C for
the configuration model can be exactly calculated (Newman
2003). For the undirected graph of the Wikipedia dataset,
the value of C of the corresponding configuration model

was 0.046, while the actual measured value of C was 0.39.
Moreover, the degrees of adjacent nodes were positively cor-
related for this undirected graph. Therefore, we consider
that the Wikipedia dataset can be used as the network data to
evaluate the performance of the proposed method for solving
the influence maximization problem on a social network.

Experimental Setting
For solving the influence maximization problem under the
greedy algorithm, we compared the proposed method with a
conventional method.

Given a subset A of V , ∇σ(A) is conventionally com-
puted by independently estimating σ(A∪{v}) for all v ∈ V .
Moreover, each σ(A ∪ {v}) is estimated in the following
way: We run the random process of each model from the ini-
tial active set A ∪ {v}, and count the number of final active
nodes. The empirical mean obtained by many such simula-
tions is used as the estimate of σ(A ∪ {v}). From the prob-
lem of computational time, we mainly used 100 simulations
and 1000 simulations to estimate ∇σ(A) in the experiments.
We refer the methods using 100 simulations and 1000 sim-
ulations for the IC model to as the IC100 and the IC1000,
respectively. In the same way, we define the LT100, LT1000
and LT10000 for the LT model.

For the proposed method based on bond percolation, we
need to specify the number M of sample vectors in Equa-
tion (1). We refer the methods using M = 100, M =
1000 and M = 10000 for the IC model to as the ICBP100,
ICBP1000 and ICBP10000, respectively. We define the
LTBP100, LTBP1000 and LTBP10000 for the LT model in
the same way.

On the other hand, the IC and LT models have parameters
to be specified in advance. In the IC model, we assigned a
uniform probability p to the propagation probability pu,v for
any directed link (u, v) of the network, that is, pu,v = p. In
the LT model, we uniformly set weights as follows: For any
node v of the network, the weight wu,v from a parent node
u ∈ Γ(v) is given by wu,v = 1/|Γ(v)|.

Experimental Results
We compared the proposed method with the conventional
method in terms of both the performance of the approximate
solution Ak obtained for a target set size k and the process-
ing time. The performance of Ak is measured by the influece
degree σ(Ak). We estimated σ(Ak) by using 300, 000 sim-
ulations accoriding to the work of Kempe, Kleinberg, and
Tardos (2003). All our experimentation was undertaken on
a single Dell PC with an Intel 3.4Ghz Xeon processor, with
2GB of memory, running Linux.

Tables 1 and 2 show the performance of the approximate
solution Ak of size k by each method for the IC model with
p = 10% and the LT model on the blog dataset, respectively,
where the values are rounded to the first decimal place.
As predicted, we observe that the solutions by the IC1000,
ICBP1000, LT1000 and LTBP1000 outperfom those by the
IC100, ICBP100, LT100 and LTBP100, respectively. More-
over, we observe that the solutions by the ICBP1000 and
LTBP1000 outperfom those by the IC1000 and LT1000, re-
spectively. Here, we investigate the reason for the results.
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Table 1: Performance of approximate solutions for the in-
fluence maximization problem under the IC model with p =
10% in the blog dataset.

k IC100 IC1000 ICBP100 ICBP1000

1 173.9 173.9 173.9 173.9

10 661.0 693.4 693.1 701.8

20 743.1 858.1 869.0 874.3

30 831.7 959.1 983.8 990.7

Table 2: Performance of approximate solutions for the influ-
ence maximization problem under the LT model in the blog
dataset.

k LT100 LT1000 LTBP100 LTBP1000

1 275.6 285.6 285.6 285.6

10 1543.8 1592.4 1590.5 1603.5

20 2126.2 2412.0 2428.0 2436.5

30 2649.9 3023.5 3049.6 3065.3

Let us consider estimating ∇σ(Ak), and choosing a node
vk+1 that maximizes σ(Ak ∪ {v}) (v ∈ V ). Then, we note
that the effect of Ak is not equally evaluated for all v ∈ V
in the conventional method, since σ(Ak ∪ {v}) is indepen-
dently estimated for every v by simulations. We also note
that the number of final active nodes for a given target set
greatly varied every simulation in the IC and LT models.
These facts imply that for the conventional method with-
out performing many simulations, the selection of vk+1 can
completely depend on how the effect of Ak is evaluated by
chance for each v. On the other hand, the effect of Ak is
equally evaluated for all v ∈ V in the proposed method. In
fact, when σ(Ak∪{v}) is estimated using Equation (1), each
|F (Ak ∪ {v};Grm

)| is basically computed by

|F (Ak ∪ {v};Grm
)| =

∣∣F (v;GAk
rm

)
∣∣ + |F (Ak;Grm

)| .

Therefore, we consider that the proposed method can out-
perform the conventional method.

Table 3 shows the processing time to obtain Ak for the
IC1000, ICBP1000, LT1000 and LTBP1000 on the blog
dataset, where the values are rounded to three significant
figures. As predicted, the IC1000, ICBP1000, LT1000 and
LTBP1000 needed about ten times as much processing time
as the IC100, ICBP100, LT100 and LTBP100, respectively.
We observe from Table 3 that the ICBP1000 and LTBP1000
can be much more efficient than the IC1000 and LT1000, re-

Table 3: Processing time (sec.) in the blog dataset.

k IC1000 ICBP1000 LT1000 LTBP1000

1 3.70 × 10
2

7.07 6.57 × 10
2

3.19

10 4.69 × 10
4

5.68 × 10
1

4.24 × 10
4

2.96 × 10
1

20 1.24 × 10
5

1.09 × 10
2

1.25 × 10
5

5.64 × 10
1

30 2.13 × 10
5

1.60 × 10
2

2.32 × 10
5

8.20 × 10
1

spectively. For example, to obtain the approximate solution
A30 for k = 30, both the IC1000 and LT1000 needed about
2.5 days, while the ICBP1000 and LTBP1000 needed about
2.5 and 1.5 minutes, respectively. We also examined the
LT10000 on the blog dataset. Although the ICBP10000 and
LTBP10000 outperformed the ICBP1000 and LTBP1000
just a little, resepectively, the LT10000 still improved the
LT1000 in performance of approximate solutions. For ex-
ample, for k = 30, the performance values of the solutions
by the LT10000, LTBP10000 and ICBP10000 were 3059.0,
3066.3 and 991.6, respectively. Moreover, to obtain ap-
proximate solution A30, the LT10000 needed about 27 days,
while the LTBP10000 needed only about 14 minutes. These
results indicate that the proposed method can be much more
efficient than the conventional method, and achieve a large
reduction in computational cost.

Tables 4, 5 and 6 show the experimental results in the
Wikipedia dataset. We can see that the results were qualita-
tively very similar to the ones for the blog dataset. We also
conducted experiments on some real large networks includ-
ing a blogroll network of blogs, and confirmed the effective-
ness of the proposed method.

Table 4: Performance of approximate solutions for the in-
fluence maximization problem under the IC model with p =
1% in the Wikipedia dataset.

k IC100 IC1000 ICBP100 ICBP1000

1 122.0 138.6 137.1 138.6

10 371.1 390.6 396.6 405.3

20 410.8 455.7 469.3 475.1

30 449.5 497.0 509.8 516.0

Table 5: Performance of approximate solutions for the in-
fluence maximization problem under the LT model in the
Wikipedia dataset.

k LT100 LT1000 LTBP100 LTBP1000

1 340.8 340.8 293.4 340.8

10 1237.2 1715.5 1669.3 1718.0

20 1991.8 2554.8 2496.3 2581.6

30 2214.4 3117.2 3054.8 3181.0

Table 6: Processing time (sec.) in the Wikipedia dataset.

k IC1000 ICBP1000 LT1000 LTBP1000

1 6.63 × 10
2

1.91 × 10
1

5.41 × 10
2

5.17

10 1.94 × 10
5

1.74 × 10
2

9.60 × 10
4

4.64 × 10
1

20 4.82 × 10
5

3.42 × 10
2

3.03 × 10
5

8.57 × 10
1

30 8.03 × 10
5

5.10 × 10
2

5.69 × 10
5

1.21 × 10
2

1375



Related Work
First, we describe some work related to the computation
of influence degrees in the IC model. Let us recall that
the SIR model for the spread of a disease on a network is
equivalent to a bond percolation model on the same net-
work, and the size of a disease outbreak from a node cor-
responds to the size of the cluster that can be reached from
the node by traversing only the “occupied” links. Using
this correspondence, researchers presented a method of the-
oretically calculating the probability distribution for the size
of a disease outbreak that starts with a randomly chosen
node in the configuration model (i.e., a random network
model) with a given degree distribution (Newman 2002;
2003). Moreover, they theoretically derived a condition for
the disease outbreak from a randomly chosen node to give
an epidemic outbreak that affects a non-zero fraction on the
network in the limit of large network size. Mathematically
more rigorous treatments of similar results can be found in
the work of Molloy and Reed (1998).

Next, we describe some work related to the computation
of influence degrees in the LT model. Watts (2002) inves-
tigated the LT model on a network to explain large but rare
cascade phenomena triggerd by small initial shocks. Us-
ing the concept of site percolation, he theoretically derived
a condition for the cascade from a randomly chosen seed
node to give a global cascade that affects a non-zero frac-
tion on the network in the limit of large network size for the
configuration model (i.e., a random network model) with a
given degree distribution.

The above mentioned studies focused on global proper-
ties averaged over a random network in the limit of large
network size, while our primary concern is to practically an-
swer which nodes are most influential for information dif-
fusion on a given real-world network of finite size. We
also note that those studies dealt with undirected graphs,
while our work investigates information diffusion on net-
works represented by directed graphs. Moreover, the the-
ories developed in those studies assumed that the loop struc-
ture on a network of interest can be essentially ignored in the
limit of large network size. However, this property is not true
of many large-scale social networks, and it is an open ques-
tion whether or not those theories are effective for such net-
works (Newman 2003). In fact, although the clustering co-
efficient C quantifies the loop structure in a network, it was
observed that many social networks have much higher val-
ues of C than the corresponding configuration models (i.e.,
random network models) (Newman & Park 2003).

Conclusion
We have considered the influence maximization problem on
a large-scale social network represented as a direced graph
for the IC and LT models. For approximately solving the
problem, the conventional method under the greedy algo-
rithm needed a large amount of computation. Thus, we have
proposed a method of efficiently estimating all the marginal
gains ∇σ(A) for the influence degree σ(A) of a given target
set A, and applied it to approximately solving the problem
under the greedy algorithm. Using real-world large-scale

networks including blog networks, we have experimentally
demonstrated that the proposed method can be much more
effective than the conventional method.
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