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Preface 

Network analysis and modeling address a wide spectrum of techniques for studying domains 
consisting of individuals that are linked together into complex networks. Networks refer to artificial 
and natural systems like communication networks, social networks and biological networks. They 
constitute a very active area of research in a variety of scientific disciplines, including Physics, Biology, 
Artificial Intelligence and Mathematics. Both graph theory and techniques recently developed for the 
analysis of networks provide a substantial background for studying complex network structures and 
dynamics in artificial and biological systems. They allow us to answer questions in common to these 
networks like aspects of adaptability, error and attack tolerance, complexity, community structures, 
and propagation patterns. 

One of the key features of natural networks is their ability to adapt to changing environments, 
maintaining an appropriate pattern of behaviour. Examples of such adaptive capacity span the whole 
range of natural networks, from gene-protein interaction networks within individual cells, through 
physiological systems, to ecosystems. 

The aim of this symposium was to provide a forum to bring together researchers in biology, computer 
science and related disciplines in order to discover related mechanisms in natural and artificial 
networks and to initiate, combine and promote research in both fields.  
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Network Analysis and Dynamic Conflict

Ulrik Brandes?

?Department of Computer and Information Science, University of Konstanz
Box D 67, 78457 Konstanz, Germany

Ulrik.Brandes@uni-konstanz.de

Abstract

After a general introduction to the emerging field of network analysis, we will focus on the analysis of
group structure in dynamic networks. By defining groups based on similarity of neighborhoods rather
than local density, nodes can be associated to roles representing structural positions in a network. A
recently proposed relaxation of discrete role assignment allows for varying degrees of membership in
such roles, and also points to dominant representatives within roles. The utility of this new approach
is demonstrated on dynamic event data extracted from news reports on conflicts that took place in the
Persian Gulf and on the Balkans.

1



Adaptation in Biological Networks:
From the genome to ecosystems

Barbara Drossel?

?Institute of Solid State Physics, Technical University of Darmstadt
Hochschulstr. 6, D-64289 Darmstadt

barbara.drossel@physik.tu −darmstadt.de

Abstract

Networks are ubiquitous in biological systems. Two widely studied examples are regulatory genetic
networks and foodwebs. Both types of networks show a high degree of adaptation: Genetic networks
perform reliably, even though the individual elements are affected by noise. Foodwebs retain their
complex structure in spite of highly nonlinear population dynamics and changes in the foodweb com-
position. This talk will discuss both types of systems from the perspective of a theoretician. After a
general introduction, models for both systems will be presented that capture the features that are es-
sential for tackling the question of robustness and stability. By discussing the structure and dynamics
of these networks, features that convey stability are identified. Among these are stabilizing topological
elements in genetic networks and adaptive foraging behavior in food webs.
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Abstract 

 
Fault tolerance is a key aspect of the dependability of complex computer-based systems. Fault 
tolerance may be difficult to measure directly in complex real world systems, and we propose here 
to measure it in terms of integrity preservation of the system under the assumption of a particular 
fault occurrence distribution. We measure the integrity preservation ability of the system by 
measuring the change of structural integrity of the graph representing the system while it is exposed 
to random node removal according to the assumed fault distribution. We show how to use such 
measures to measure the integrity reservation of computer-based systems and in this way indirectly 
their fault tolerance. We discuss the application of the proposed method in the context of a real 
world example, the Linux operating system. The results indicate that integrity preservation metrics 
can serve as an appropriate measure of fault tolerance of complex computer-based systems. 
 

1   Introduction 
The concept of fault tolerance of complex computer-
based systems, and in particular of computers and 
software, emerged very early in the 1950s (Lee and 
Anderson, 1990). It was recognized that unexpected 
faults may emerge in computer-based systems, and 
that effective dealing with such faults it is critical 
for highly dependable systems. Fault tolerance is a 
key measure of the dependability of computer-based 
systems (Lee and Anderson, 1990; Laprie, 1992), 
dependability being defined as reliability, 
availability, safety, security, survivability, and 
maintainability of a system (Aviziensis et al, 2001).  

Generally systems can be perceived as a set of units 
that are interconnected by their actions and 
behaviours (von Bertalanffy, 1973). Computer-
based systems can be seen as systems with units 
which can be computer hardware, software, humans, 
and possibly a variety of other machines and human 
artefacts containing sensors and actuators. The 
interconnecting actions and behaviours of these 
units can take the form of data entry to the 
computers, data communications between hardware 
components, data interchange and processing by 
software components, and display or 
communication of data to actuators. 

An interesting issue is how to measure the fault 
tolerance of a computer-based system. Systematic 
mathematical analysis of fault tolerance of models 
of computer-based systems started in 1960s (Lee 
and Anderson, 1990). Typically fault tolerance is 
evaluated by full probabilistic analysis of the 
system, by calculating measures such as mean time 
to failure and mean time to repair under the 
assumption of a fault occurrence scenario (e.g., 
identical and independent fault occurrence 
distribution for each system component) (Amari, 
2000; Chang et al, 2004; Ou and Dugan, 2003; 
Scerrer and Steininger, 2003).  

One stream of fault tolerance research is focused on 
the analysis of graphs that represent computer-based 
systems (Billinton and Jonnavithula, 1999; Bell, 
2003; Cheng and He, 2004). These works assume a 
fault occurrence scenario in the graph (e.g., node 
failure or edge failure) and measure the probability 
of connectedness (Beichelt and Tittmane, 1991; 
Elperin et al, 1991) or of having flow capacity 
above a given limit (Chan et al, 1997; Kishimoto, 
1997) of the graph as a proxy measure for the fault 
tolerance of the system represented by the graph. 
The main drawback of these methods is that they are 
very computationally intensive and in many cases 
they are restricted to a narrow range of particular 
graph topologies (Al-Sadi et al, 2002; Goerdt, 2001; 
Goerdt and Molloy, 2003). 
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An alternative way to analyse the robustness of 
systems is to use structural graph analysis methods 
that reveal vulnerable components and the 
sensitivity to structural damage of the system 
(Albert et al, 1999). These methods assess the 
integrity of the system and the change of integrity 
measures after structural damage to the system in 
terms of structural measures, such as diameter, 
average minimum path length or average clustering 
coefficient. The underlying theoretical assumption is 
that system structural integrity implies functional 
integrity of the system (Andrews and Beeson, 2003; 
Ferrandi et al, 2003). This is supported by practical 
examples, which show that structural integrity and 
functional integrity of systems are strongly 
correlated (Albert et al, 1999; Jeong et al, 2001). 
Consequently, the analysis of the structural integrity 
of the graph representing a system by appropriate 
structural measures can provide indicator measures 
of the functional integrity of the system. 

We propose in this paper the use of structural graph 
analysis methods to measure the integrity of 
computer-based systems. We measure the likely 
structural damage as an approximation of likely 
functional damage due to the presence of faults. In 
this way we can assess the fault tolerance of the 
system by measuring the likely change of structural 
integrity of the system. 

The rest of the paper is structured as follows. 
Section 2 discusses system integrity measures. In 
Section 3 we analyse the link between fault 
tolerance and integrity measures. Section 4 presents 
an example of the application of the proposed 
methodology to the assessment of fault tolerance of 
computer-based systems. Finally, in section 5 we 
draw some conclusions of the paper. 

2 System integrity 
Systems are sets of component units interconnected 
by their interactions (von Bertalanffy, 1973). 
Component units interact by their behaviour 
modifying the state of the units participating in such 
interactions. In a stronger sense we may consider 
systems as only those sets of interacting component 
units, in which the interactions between components 
depend primarily on earlier interactions between 
system components (Andras and Charlton, 2005). 
We should also point out that system components 
may also interact with other units, which are not part 
of the system. Such interactions constitute the 
system’s interaction with its environment. 

The integrity of a system can be defined in 
functional terms as the system's ability to perform 
the full range of system behaviours (Ferrandi et al, 

2003). The system behaviours are possible patterns 
of behaviours of its component units (Lee and 
Anderson, 1990). Some of these behaviours may 
have an effect on the system’s environment, while 
others may cause only a change of the internal 
behaviour of the system.  

Measuring functional integrity directly may be 
difficult, as the full range of possible system 
behaviour may not be known (Ferrandi et al, 2003).  
A way to approximate the functional integrity of a 
system is to measure its structural integrity 
((Andrews and Beeson, 2003). In practical cases of 
living cells (Jeong et al, 2001), nervous systems of 
animals (Scannell et al, 1995), and technological 
systems (Albert et al, 1999) it has been shown that 
their functional integrity correlates strongly with 
their structural integrity. Measuring structural 
integrity is much simpler than measuring functional 
integrity, in the sense that it requires only the 
measurement of the existence of components and 
interactions between components, disregarding the 
actual functional semantics of interactions and 
interaction patterns. 

Structural integrity measures of systems are based 
on the measurement of the structural integrity of the 
underlying graph structure of the system, which is 
made of nodes representing system units, and edges 
or arcs representing undirected or directed 
interactions between system units. (We consider 
undirected graphs only in what follows).  

Simple measures of structural integrity of graphs 
include the diameter, the average minimum path 
length and the average clustering coefficient of the 
graph. The diameter is defined as the largest of the 
minimal path lengths between nodes of the graph: 

},{},,|),(max{)( EVGVjijilGD =∈= (1)

where V is the set of nodes and E is the set of edges 
of the graph, and l(i,j) is the minimal length of a 
path between the nodes i and j. The average 
minimum path length is defined as the average 
length of minimal paths between all pairs of nodes 
of the graph that can be connected (i.e. infinite 
length shortest paths are ignored): 
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where we use the same notations as above. The 
clustering coefficient of a node is the proportion 
between the number of existing edges between the 
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neighbours of the node and the number of all 
possible edges: 
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The average clustering coefficient of the graph is the 
algebraic average of the clustering coefficients of all 
nodes: 
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We note that the above measures evaluate somewhat 
different aspects of the graph integrity; none of them 
provides a comprehensive evaluation of the graph 
integrity. In order to be on the safe side in practical 
applications the best practice is to use such a set of 
simple integrity measures and evaluate the graph 
integrity using the resulting set of integrity measure 
values (i.e., by considering a vector of integrity 
measure values). In particular, if we need a single 
value measure of the graph integrity on the basis of 
a vector of integrity measures, the safest is to take 
the value indicating the greatest amount of integrity 
loss. 

Other more sophisticated measures of graph 
integrity include the calculation of coefficients of 
the graph’s characteristic polynomial, and 
eigenvalues of the graph’s adjacency matrix. These 
methods can provide a full picture of the graph's 
integrity and in principle capture all its aspects. The 
disadvantage of these methods is that they are 
computationally very expensive, and the calculation 
of the required numbers may be impractical for very 
large graphs representing complex systems. The 
above introduced simple integrity measures are well 
correlated with the more general measures. The 
largest eigenvalue of the adjacency matrix is related 
to the density of the edges, the second eigenvalue is 
related to the conductivity within the network 
(Farkas et al, 2001). The second coefficient of the 
characteristic polynomial is related to the number of 
edges, while the third coefficient is twice the 
number of triangles in the network (Biggs, 1994).  

An important issue regarding the use of graph 
integrity measures to assess the integrity of systems 
is that of how to actually measure the system 
components and their interactions. One approach 
can be to consider the design of the system, if this is 
available. (For technological systems this might 
often be the case.) However, this approach can lead 
one to fall into the trap of showing the robustness of 
the designed system and not of the actual system. 
We believe that the right approach is to measure the 

existing components of the real system and their 
existing interactions in order to assess the integrity 
and robustness of the actual system. However, we 
recognize that in some practical cases such 
measurements might prove to be difficult (e.g., 
monitoring of human – computer interactions), 
limiting the applicability of the structural graph 
analysis based assessment of system integrity 
evaluation.  

In the case of computer-based systems we typically 
have a set of non-computer related units (e.g., 
humans, sensors), a set of hardware units making 
the computer hardware part of the system, and 
usually a very large set of software modules, 
constituting the units of the system. In some cases 
we ignore the non-computer related units and even 
the hardware part of the system and we focus our 
attention exclusively on the system made of 
software units. The interactions between software 
units take the form of data transactions between 
them, which can be measured by appropriate 
monitoring of the system (Periorellis et al, 2004). 

3 Fault tolerance and integrity 
preservation 
Faults are unexpected behaviours of system 
components. Faults in computer-based systems may 
have a number of origins; they can be classified as 
design faults, physical faults and interaction faults 
(Aviziensis et al, 2001). Faults cause errors in the 
system, which are deviations from the expected 
behaviour of the system. Errors in computer-based 
systems may stay latent, until they are detected, 
when they cause abnormal behaviour at the interface 
of the system with its environment (Lee and 
Anderson, 1990). Errors cause failures of the 
system, when the system is unable to perform its 
function correctly (Aviziensis et al, 2001). 

Faults in the system may occur at various places. An 
important feature of faults is their occurrence within 
the system and their distribution at these places 
within the system. In many cases we may suppose 
that the faults may appear at any system unit 
according to the same occurrence distribution, no 
unit being more susceptible for producing faulty 
interactions than others (Amari, 2000). In some 
cases we may also use the hypothesis that the 
likelihood of faulty interactions is proportional with 
the likelihood of the unit being involved in 
interactions. In other cases the fault distribution may 
follow some peculiar well defined distribution, such 
as in the case of faults induced by malicious logic 
(e.g., attacks by hackers). The types of fault 
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distributions determine the fault occurrence 
environment of the system.  

Fault tolerance is the ability of the system to 
maintain its functionality in the presence of active 
faults (Lee and Anderson, 1990). Fault tolerance is 
typically achieved by error detection, recovery and 
fault handling (Aviziensis et al, 2001). Fault 
tolerance of computer-based systems depends on the 
fault occurrence environment of the system (e.g., in 
presence of naturally occurring faults the system 
may prove sufficiently fault tolerant, while in the 
presence of targeted attack by hackers, it may prove 
fault sensitive).  

In general the measure of fault tolerance of the 
system is a relative measure, which shows to what 
extent the system preserves its functionality in a 
certain fault occurrence environment (Lee and 
Anderson, 1990). To assess the fault tolerant nature 
of a computer-based system we need to assess the 
level of functionality of the system within the 
considered fault occurrence environment. In other 
words we need to evaluate the functionality 
preservation ability of the system. Usually some 
probabilistic approach is used to evaluate fault 
tolerance measures such as mean time to failure or 
mean time to repair (Lee and Anderson, 1990). 
These methods take into consideration the whole 
system resulting computationally very intensive 
analyses in case of large systems (Chang et al, 2004; 
Billington and Jonnavithula, 1999). To perform such 
exhaustive evaluations may prove difficult in 
practice, as monitoring and assessing all aspects of 
the functionality of the system and performing all 
the required calculations may be extremely time and 
resource consuming (Ferrandi et al, 2003). 
Alternative methods were proposed recently, 
involving game theoretic approaches (Bell, 2003), 
formal languages inspired analysis (Phoha et al, 
2004) and structural network analysis approaches 
(Albert et al, 1999). 

We adopt the structural network analysis approach, 
which has the key advantage that it implies a 
relatively low computational load for the evaluation 
of large systems. We measure the fault tolerance of 
the system by evaluating the ability of the system to 
preserve its integrity. The measure of integrity 
preservation is calculated by using system integrity 
measures based on a structural graph analysis of the 
graph representing the system. As structural 
integrity is strongly correlated with functional 
integrity, the structural integrity preservation 
measure provides a proxy measure of the functional 
integrity preservation measure of the system. 
Consequently, we can use the structural integrity 

measures introduced in the previous section to 
measure the change of the integrity of the system in 
a given fault occurrence environment.  

To measure the effects of faults on the integrity of 
the system, we simulate the faults by sampling the 
fault occurrence distributions and then evaluating 
the integrity measures of the system in the presence 
of simulated faults. The presence of faults causes the 
elimination from the graph of the system of edges 
between nodes or of nodes of the graph. These 
changes happen according to the fault occurrence 
distributions and have the effect that the integrity 
measures of the system graph are modified. The 
expected changes in terms of integrity measures 
may be calculated analytically in the case of small 
systems or can be evaluated by numerical 
simulations in the case of large and complex 
systems. The expected changes associated with a 
fault occurrence environment characterise the 
system’s integrity preservation ability and are used 
as an approximate measure of the fault tolerance of 
the system. 

To show how to use the calculated integrity 
measures to assess the fault tolerant nature of a 
system we consider below a toy example. Let us 
consider a software system of 1000 units of which 
corresponding graph representation is shown in 
Figure 1. The system’s structural integrity measures 
are the following: (1) diameter: D(S)=19; (2) 
average minimum path length: µ(S)=3.58151; (3) 
average clustering coefficient: η(S)=0.022702 

Figure 1: The graph representation of the model 
system with 1000 nodes. The size of the nodes 

indicates the number of connections of the node. 
Only the subset of more connected nodes and the 

subset of connections between these nodes are 
displayed to keep the figure comprehensible. 
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We consider a fault occurrence environment in 
which the faults occur with equal uniform 
probability (p=0.15) at each unit of the system and 
each fault temporarily knocks out the system unit 
where it occurs. To evaluate the fault tolerance of 
the system we perform a numerical simulation of the 
fault occurrences, and evaluate the integrity 
measures of the system for each simulation. After 
the simulations we calculate the average values and 
variances of the system integrity measures. We 
chose to run 20 simulations in order to get reliable 
estimates of mean values (the variance of the mean 
value calculated from n measurements is σ/square-
root(n), where σ is the variance of the calculated 
values). The calculations after the simulations led to 
the values: (1) diameter:  avg(D(S))=23.05, 
var(D(S))=4.1355; (2) average minimum path 
length: avg(µ(S))=3.6994, var(µ(S))=0.0397; (3) 
average clustering coefficient: avg(η(S))=0.023, 
var(η(S))=0.0014. 

To evaluate the integrity preservation ability of the 
system we calculate first, whether the average 
values of system integrity measures after the 
simulation of faults differ significantly or not from 
the corresponding values calculated for the fully 
functional system. Next we calculate the normalized 
distance of the pre-damage and post-damage 
integrity measure values, which together with their 
attached statistical significance levels characterize 
the fault tolerance of the system. In order to be on 
the safe side, we choose the worst measure (i.e., the 
largest and most significant distance) to be the 
numerical evaluation of the fault tolerance of the 
system. In the case of the above system the 
normalized distances (z-score, i.e., the distance 
measured between the mean value and original 
value in units equal to the standard deviation – 
(voriginal – m)/σm) and statistical significance levels 
(statistical significance levels show how likely is 
that the original value is the same as the estimated 
mean value after damage, low p-value indicates that 
the likelihood of them being the same is very low, or 
in other words the two values differ significantly) 
are listed in Table 1. 

In the case of the above toy example we have shown 
how to apply in principle the proposed structural 
graph analysis based integrity evaluation methods to 
assess the fault tolerance of a computer-based 
system. The data shown in the last column of Table 
1 shows the values of the likelihoods that original 
value of the integrity measure is the same as its 
value after the damage. The results indicate that 
under the above described fault occurrence 
environment assumption the system suffers 
significant damage (p<0.01) in terms of diameter 

and average shortest path length, the amount of the 
latter damage being more significant than the 
former. Considering the most significant damage 
(i.e., the damage in terms of average path length, 
p=7.29 x 10-14), we conclude that under the 
considered fault occurrence assumption the system 
represented by the graph suffers very significant 
structural and functional damage, and consequently 
has low fault tolerance. 

Table 1: Summary of integrity measures of the 
system before and after damage, including the z-
score for the original values considering the mean 
and variance of the after damage values (z-score = 

(original – damage mean)/(damage variance / 
square-root(20))), and the statistical significance 

level of the difference between the original values 
and the mean values calculated after the damage. 

The p values above 0.1 are omitted. 

Integrit
y 
measur
e 

Origi
nal 

Dama
ge 
mean 

Dama
ge 
varia
nce 

z-
score 

p-
value 

Diamet
er 

19 23.05 4.135 4.379 1.2 x 
10-5 

AvSho
rtPath 

3.582 3.699 0.040 13.26 7.29 x 
10-14 

AvClu
sCoef 

0.023 0.023 0.002 1.079 - 

 

4 Application 
Linux is one of the most popular operating systems, 
which is due to a good extent to its open source 
based development. It is commonly claimed that 
Linux is more reliable and secure than many other 
operating systems. An immediate question is how 
fault tolerant is Linux actually. 

We analysed the network structure of the Linux 
under typical running conditions with a set of usual 
programs running. To perform the analysis we 
considered the calls between the classes present in 
the Linux kernel (version 2.4.19). We found 6815 
classes and 19909 calls between them, by parsing 
the source code of the classes. The interaction 
network of the classes (see Figure 2) was then 
analysed in terms of structural network analysis. 
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Analysing the connectivity distribution of the 
processes we found that the distribution follows a 
power law distribution (with exponent γ = -1.33; see 
Figure 3) similar to the case of the Internet (Albert 
et al, 1999). This indicates that among the Linux 
classes there are relatively few very highly 
connected classes (which call and are called by 
many other classes) and many others with relatively 
few connections. This implies that similarly to the 
Internet (Albert et al, 1999) the Linux is very robust 
and fault tolerant if faults happen randomly 
following a uniform fault distribution over the 
processes (run-time representation of classes), while 
it should be very vulnerable and fault sensitive if 
faults are distributed such that they affect mostly the 
most highly-connected processes. 

 

Figure 2: The graph representation of the Linux. The 
size of the nodes indicates the number of 

connections of the node. Only the subset of more 
connected nodes and the subset of connections 

between these nodes are displayed to keep the figure 
comprehensible. 

We performed an analysis of the Linux class 
network to evaluate the effects of faults on integrity 
measures. We simulated a scenario with uniform 
random distribution with   probability of faults at 
each node. We also performed a simulated a 
scenario when the likelihood of a node being faulty 
was proportional with the connectivity of the node.  
The analysis results are shown in Table 2 and Table 
3. 

The results show that as we expected Linux is 
remarkably fault tolerant in a fault occurrence 
environment characterised by uniform fault 
distribution, while it is significantly more fault 
sensitive in the case of a fault distribution centred on 
the mostly linked processes. This suggests that 

indeed the common belief about the reliability and 
fault tolerance of Linux is well founded in case of 
random uniformly distributed errors, but also 
highlights that Linux is also a vulnerable system in 
case of well designed malicious attacks. (Note that 
the tables show that the average shortest path is 
decreasing after damage. This is because infinite 
shortest paths between nodes belonging to isolated 
sub-networks are ignored.) 

Table 2: Summary of integrity measures of Linux 
before and after random damage, including the z-
score for the original values considering the mean 
and variance of the after damage values (z-score = 

(original – damage mean)/(damage variance / 
square-root(20))), and the statistical significance 

level of the difference between the original values 
and the mean values calculated after the damage. 

The p values above 0.1 are omitted. 

Integrit
y 
measur
e 

Origi
nal 

Dama
ge 
mean 

Dama
ge 
varia
nce 

z-
score 

p-
value 

Diamet
er 

44 38.85 4.869 4.729 2.25 x 
10-6 

AvSho
rtPath 

12.01 11.50 0.740 3.077 0.0021 

AvClu
sCoef 

0.133 0.133 0.007 0.350 - 

 

Table 3: Summary of integrity measures of Linux 
before and after targeted damage, including the z-
score for the original values considering the mean 
and variance of the after damage values (z-score = 

(original – damage mean)/(damage variance / 
square-root(20))), and the statistical significance 

level of the difference between the original values 
and the mean values calculated after the damage. 

The p values above 0.1 are omitted. 

Integrit
y 
measur
e 

Origi
nal 

Dama
ge 
mean 

Dama
ge 
varia
nce 

z-
score 

p-
value 

Diamet
er 

44 35.45 5.062 7.552 1.41 x  
10-13 
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A toy example and a real world example were 
presented to show the application of this fault 
tolerance measurement approach. These examples 
show that indeed the proposed methods can be 
applied effectively and lead to meaningful 
conclusions about the analysed systems. In the case 
of the real world example (Linux) the analysis 
indicates that the system is very fault tolerant under 
the assumption of uniform fault distribution, but 
that, not surprisingly, it is very vulnerable under the 
assumption of a fault distribution driven by properly 
targeted malicious interventions. However, the 
methods discussed here enable the extent of this 
effect to be analyzed in useful detail.   

AvSho
rtPath 

12.01 10.47 1.444 4.766 1.87 x  
10-6 

AvClu
sCoef 

0.133 0.132 0.005 1.018 - 

 

 

We believe that using relatively simple network 
integrity measures can simplify considerably the 
effective analysis of fault tolerance of large real 
world computer-based systems. Although these 
methods do not provide an exact measure of fault 
tolerance they provide good approximations of the 
actual measure. Such approximate measures can be 
used to rapidly determine the effects of a variety of 
fault occurrence environments, allowing the 
designers and developers of large systems to prepare 
appropriate defence and repair strategies to support 
the dependability of their system effectively and 
efficiently. 

Figure 3: The distribution of connectivities in the 
case of the Linux classes and calls network  

4 Conclusions  
Fault tolerance is measurable aspect of the 
dependability of computer-based systems. Direct 
measurement of fault tolerance of large real world 
systems poses considerable problems, considering 
that most existing work is focused on exhaustive 
analytical evaluation of relatively simple model 
systems (Billinton and Jonnavithula, 1999; Bell, 
2003; Cheng and He, 2004). An approach to find a 
proxy measure for the fault tolerance of large 
systems is to measure their structural integrity 
preservation under the assumption of a fault 
occurrence environment. This measure is based on 
the assumption that functional integrity is strongly 
correlated with structural integrity (Andrews and 
Beeson, 2003; Ferrandi et al, 2003), which is 
supported by experimental analysis of various real 
world complex systems (Albert et al, 1999; Jeong et 
al, 2001). 
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Abstract

We propose a framework for a unifying, associative access to distributed and heterogenous information
resources. The classical index generation is replaced by a process which builds associations between
existing information entities and allows for an interactive exploration of information accessible through
this structure. Positive (”‘this looks interesting”) as well as negative (”‘I know this!”) user feedback
allows the system to quickly narrow down on interesting pieces of information. The continuous inte-
gration of new analysis engines, added sources of information and user feedback allow the formation
of a corporate wide memory and expert knowledge repository.

1 Motivation

Large corporations increasingly drown in all sorts
of data and other types of information they collect.
Modern storage technology essentially sets no limit
to the amount of information that can be stored. The
huge challenge is the problem of usage — how can
users be sure that they did take into account all rel-
evant pieces of information that relate to the current
task or problem they are dealing with?

One prime example for this scenario are research
departments in many pharmaceutical companies. In
order to successfully develop new drugs, many dif-
ferent types of information need to be combined, in
the end resulting in a new idea for a medication that
has not been patented before, that has no dangerous
side effects, or that is not, in some similar form, al-
ready being explored elsewhere. Currently this pro-
cess relies heavily on experts having intuition, long
years of experience and hopefully the right insights at
the right time. The sources of information these ex-
perts rely on are distributed across the entire company
(and some also over the entire internet): experimental
protocols, patent information, scientific publications,
biological information about metabolic pathways just
to name a few, and not to forgot, also the colleague
down the hall who would have something interesting
to say but who our expert did not happen to meet at
the coffee pot.

Current approaches try to address this problem by
building huge information repositories based on so-
phisticated database technology. Associative Infor-

mation Networks, as described here, aim to take an
alternate approach – instead of bringing all the infor-
mation together we propose to build a meta structure
that points to the information and helps the user find
interesting associations among different pieces of in-
formation through means of exploration and context
refinement. This meta structure is continuously up-
dated as more sophisticated methods to analyze the
information sources arise. In addition, it is possible to
naturally incorporate user annotations, capturing ex-
pert knowledge and feedback on the way. This pro-
cess is supported by methods derived from research
in the areas of data mining, information retrieval,
knowledge management, network and graph theory,
data visualization and human computer interaction.

2 Related Work

There has been a lot of work done in the past on
the idea of associative information processing, which
was in the beginning mainly motivated by the asso-
ciative information processing capabilities of the hu-
man brain (see, e.g., the work of Collins and Lof-
tus (1975)). Thus we can find methods ranging from
very general neural network based approaches of Ko-
honen (1977, 1984), over possibilistic networks or
graphs (Borgelt et al., 2000; Cao, 2000) and belong-
ing reasoning methods (Dubois et al., 1994; Gebhardt
and Kruse, 1995) to very specific ideas related to
document indexing and retrieval, e.g. (Chen, 1995;
Chung et al., 1998; Belew, 2000). Furthermore, also
ontologies and the Sematic Web (Berners-Lee et al.,
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2001) might be considered as an approach to enable
linking of semantically associated information.

However, several of the earlier projects failed,
since almost all of them are based on the idea that
it is possible to know in advance or learn automati-
cally an almost perfect descriptive link from (index-
)keywords to documents or in-between documents.
This information was then used in some kind of rea-
soning mechanism to retrieve relevant documents.
Unfortunately, in most cases this leads to the retrieval
of too few or far too many documents. A further ma-
jor problem had been the poor visualization methods
used.

In order to circumvent these problems, more
recently, some projects started in which methods
have been studied that are also able to handle more
general associative networks by providing interactive
visualization methods. In order to navigate and
browse complex association networks powerful
tools for visualizing relevant subsets for the current
exploration (or search) context of the user are
required. Recent commercially available approaches
that try to tackle this problem are, e.g., the Per-
sonal Brain (http://www.thebrain.com/ ),
a navigator for indexed data that is however
only able to access documents on a local
data repository and the iAS KnowledgeSuite
(http://www.knowledgesuite.de/ ). The
KnowledgeSuite performs a semantic text anal-
ysis and creates strong links between previously
identified, named entities. In this case, however,
association are originate only from primed neurons
using positive activity spreading. No interactive
refinement or inclusion of uncertain, imprecise
information is possible.

In general one might argue that the linking of doc-
uments as proposed for the semantic web might solve
the problems of linking information sources. How-
ever, in the semantic web, one is forced to either link
or not link documents, where an existing link has a
clear, semantically valid meaning. Even though it
is in general possible to introduce mechanisms for
context based links (as realized for example in topic
maps, see e.g. Biezunski et al. (1999)), no mechanism
for storing ’gradual’ (e.g. possibilistic, probabilistic,
or simply anecdotal or evidential) links between doc-
uments are implemented. Furthermore, in the seman-
tic web the whole web is seen as the knowledge base
which includes both, linksand information chunks.
In our approach we add a general layer of links over
(the possibly already existing link layer within) the
considered database of information entities, which
could consist of information in the world wide web, a

local database or even notes on a local PC. This layer
allows to model a personal (or group based) view on
the same information, independent of (and not con-
flicting with) links already present in the data. How-
ever, we can easily incorporate general concepts of
the (semantic) web, like URIs and existing ontolo-
gies in order to model and exploit already available
information.

Another aspect that distinguishes our approach
from semantic web (or more general logic based)
approaches is that we do not use reasoning mecha-
nisms that require a consistent descriptions of rela-
tions between information chunks. The main goal of
the reasoning mechanism is to detect information that
is most likely interesting to the user for any reasons
(may be even because its contradicting!). In con-
trast, the reasoning mechanism itself is able to pro-
vide an explanation why some information has been
proposed.

One additional differentiator is the ability for con-
tinuous learning and updating of the underlying struc-
ture. Through integration of new analysis engines,
new information sources, or also manual feedback the
network continuously refines it’s internal structure.

3 Associative Information Net-
works

3.1 Structure

Associative Information Networks (AI Net in the fol-
lowing) consists of nodes and labelled edges. Each
node represents an entity, which can be a concept
from the application area (e.g. a disease, or metabolic
pathway) or a named entity, such as a gene, a protein,
or a specific target. Edges represent links between
these entities and are labelled with a reference to the
information source(s) and information about the anal-
ysis engine that created it from these sources. In addi-
tion, each edge holds a weight, modelling the strength
of association, and a label indicating the type of the
edge. This way, a link can potentially also be derived
from an ontology, representing semantic connections
between nodes.

3.2 Learning and Refinement

In order to generate theAI Net we need to introduce
nodes, and links in between them. Refinement may
cause adjustment of links and addition of new nodes.
There are two primary ways how both, nodes and
links can be added:
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• automatic generation: using analysis engines,
links between existing nodes can be added or
modified. Each analysis engine has a partic-
ular purpose and will, for instance, find co-
occurrences of words in documents, correla-
tions of genes in gene-expression experiments,
structure-activity relationships via the analysis
of cell-assay images, or connections between
genes and diseases from the analysis of patent
information. In comparison, this would resem-
ble the collection and modelling of automati-
cally derivable domain knowledge. Of course,
the addition of newly developed analysis en-
gines can continuously update the network.

• manual interaction: throughout usage of theAI
Net, the user is able to manually adjust weights
of links, mark links as wrong, or insert new links
with annotations explaining their purpose. This
interactive refinement allows to capture expert
knowledge and feedback on the fly and enables
the system to model expertise available within
a corporation. It is, of course, crucial that this
interaction is handled in an intuitive way. The
user should not be required to adjust numerical
weights or draw links between abstract nodes.

Adding new databases, or more generally, informa-
tion sources is straightforward – as long as an anal-
ysis engine is provided that produces dependencies
between entities represented by nodes, new links can
easily be added. One further extension of this system
would also allow to generate new nodes (and node
types) by analyzing external information sources.

3.3 Link Formation: Details

As described above, links can be introduced automat-
ically or through manual refinement. The latter pro-
cess can be seen as user annotations, incorporating
expert knowledge into the network and are therefore
mainly an issue of user interface. In the following, we
briefly outline, based on a number of examples, how
the automatic generation of links and link-weights
works.

• semantic links: these are strong links (usually
weight = 1.0) which are derived from well-
known structures, such as ontologies or seman-
tic networks. Those are usually created by an
expert. Semantic nets, as extracted (semi-) au-
tomatically from data will need to add a compo-
nent that computes the confidence for each link
and convert this to a weight.

• syntactic links: these are links that are gener-
ated by a shallow analysis of data. The most
prominent example would be a text parser that
converts words to stems, eliminates fill words
and then produces a set of bi- or trigrams. The
corresponding nodes in theAI Net will be con-
nected by weak links. For an example of the cor-
responding weight computation, see below.

• anecdotal evidence: These are links set by a
user, creating links for hypotheses generated by
a user (or based on hear-say). Weights of such
links are generally low. These links are in con-
trast to expert-based annotations that generally
have very high weights.

• data driven links: These types of links will con-
stitute the vast majority of network weights in
most cases. They are generated automatically
from data repositories. A few example (here for
the context of a pharmaceutical AI Net) could
be:

Gene correlations derived from gene expression
data. Links are introduced when, for example, a
specific thresholdθ for co-occurrence in exper-
imental data is surpassed. The link’s weight re-
flects the correlation strength and for more than
two-dimensional correlations the corresponding
multi-edges are introduced. In addition each of
these links will carry an annotation pointing to
the source of it’s weight, in this example a link
to the experiment and some meta information
(thresholdθ, date of analysis, reference to exact
computation of weight).

Textual analysis where co-occurrence of named
entities within a specific distance (= words in be-
tween) results in a weak link to be introduced.
The weight depends on distance and quality of
text source.

Links between gene and protein names derived
from scientific articles based on a bigram anal-
ysis. Weights are derived from the average
distance and frequency of occurrence in docu-
ments, analogous to the TFIDF-score (Term fre-
quency / inverse document frequency).

• ontology/thesaurus links: Based on an exist-
ing ontology links will be introduced to con-
nect entities that are related based on this ontol-
ogy. This resembles a 1:1 correspondence be-
tween each link in the ontology and a link in
the network. The resulting links are strong links,
i.e. carry a weight of1.0 since there is (usually)
no doubt about the reliability of that particular
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piece of knowledge. Otherwise it would need to
be reflected in the link’s weight.

Obviously many other types of links can be gener-
ated, since the underlying structure is invariant to ori-
gin or meaning of links.

3.4 Exploration: Finding interesting as-
sociations

The network’s structure can be used in various ways
to find potentially interesting pieces of information.
Most straightforward would be the search for tightly
connected other entities, such as another gene that
is related to the ones the user just saw within an
experiment. This can be implemented via a simple
neighbor-search in the network, finding all genes that
are connected to the set of ”query” genes.

More powerful are, however, searches that find re-
lated pieces of information via various steps, or so-
called bridge concepts. This can be implemented
analogous to activity spreading methods, as known
from the neural network community (Cohen and
Kjeldsen, 1987). The real power, in the concept
presented here, lies in the ability to perform this
search interactively. Throughout the search the user
can weight entities that he finds interesting positively
(and the ones he does not care about negatively), in-
stantly affecting the activation pattern and hence the
associations the network proposes. Such an interac-
tive scheme will heavily rely on a suitable visualiza-
tion of the graph network (see, e.g. Chen (2004)) and
appropriate adaptive user interfaces.

4 Conclusions

In this paper we have briefly presented the idea of
a generalized associative information network. With
this concept we try to simulate aspects of the associa-
tive capabilities of the human brain in order to support
a user in gathering information about a specific prob-
lem at hand. The tool is not meant to offer problem
solving capabilities, but rather to point out informa-
tion pieces a user might have otherwise not had the
chance to look at, be it for lack of knowledge about
their existence or because of a failure to see their im-
portance for the task at hand.
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Abstract 

 
Network analysis methods are widely used to detect community structures in static graphs. Since 
these structures undergo changes caused by internal and external factors it is necessary to provide 
methods to detect and observe transitions in community structures. For this we partition the interac-
tions of community members by time windows and aggregate them. The resulting static graphs of 
each interval are analyzed for sub-communities. Through this we detect if communities persist over 
time or undergo a transition. We briefly present an interactive software environment which supports 
a temporal community analysis and provides several forms of visualization and analysis settings. 
 

1   Introduction 

Communities have proven to be of strategic impor-
tance e.g. to improve knowledge sharing or to en-
hance customer retention. Thus, communities have 
been studied in many research fields. So far they are 
mainly regarded as a static phenomenon and aggre-
gated data over longer periods has been used to de-
tect communities. However, the analysis of aggre-
gated interactions between community members has 
some drawbacks. Old interactions are favored over 
newer ones and temporal developments in the inter-
action behavior can not be observed. But since com-
munities are highly dynamic social networks, ob-
serving its transitions along the time axis is an im-
portant task, e.g., to adapt community platforms in 
order to support community building or to improve 
the efficiency of communities. 

Tools such as SoNIA (Moody et al., 2005) and 
TeCFlow (Gloor and Zhao, 2004) visualize temporal 
social graphs by creating movies of them. Both tools 
work on the vertex and edge level thus visualizing a 
changing behavior between single actors. We pro-
pose to analyze and visualize temporal changes on 
the community level to allow for an exploration of 
sub-group dynamics.  

Therefore, we regard a community as an object 
that exists over time and propose a dynamic tempo-
ral observation along the time axis using sliding 
time windows. The communities are detected in a 
static representation of interactions that occur in a 
specified period (cf. Section 2.1). We determine the 
evolution of the interactions by comparing the 
communities in different time windows. By this we 

are able to detect different types of transitions a 
community might pass through such as a split or a 
merger (cf. Section 2.2). The changes in the com-
munity structure are visualized and the user can 
choose different analysis settings to further explore 
the dynamics of the community under investigation 
in order to detect triggers that caused a community 
transition (cf. Section 3). 

 
2   Model Community Dynamics 
The problem of detecting community structures in 
networks is of interest in social sciences as well as 
for many other research fields such as computer sci-
ence (e.g. WWW, e-mail log files) or biology (e.g. 
gene or protein networks) (see, e.g., Aggarwal and 
Yu, 2005, Kleinberg and Lawrence, 2001, Wilkin-
son and Huberman, 2004). In Section 2.1 we briefly 
discuss the method we use to detect communities in 
static graphs. In Section 2.2 we describe how we 
apply this method to observe the dynamics of com-
munity structures. 

2.1   Community Detection  

First, we model the network of interactions in a way 
suitable to find communities. We do so by defining 
a graph G = (V, E), in which V denotes the set of 
vertices (nodes) and E the set of edges (i, j), with i,j 
∈ V. Each community member i is denoted a dis-
tinct vertex and an interaction between two mem-
bers i and j, e.g., an e-mail exchange, is represented 
as an edge (i, j). We quantify the interaction be-
tween two members by assigning a weight w(i, j) to 
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the edge (i, j). Appropriate weights are “number of 
messages exchanged” or the “total length of all mes-
sages measured in characters”. 

Next, we decompose the graph into communi-
ties. We define a (sub) community as a subset of 
vertices within a graph with a high degree of inter-
action among the participants. We apply a hierarchi-
cal divisive clustering approach that divides the 
graph by the iterative removal of edges. The edges 
that are removed should be those that do not con-
tribute to a community.  

To determine the edge to be removed in each it-
eratio we use the edge betweenness score proposed 
by Girvan and Newman (2002). The betweenness of 
an edge is the number of shortest path between pairs 
of vertices that run along it. It is based on the as-
sumption, that the few edges between communities 
have more “traffic”, as, e.g., an information flow be-
tween vertices in two communities has to travel 
along these edges. The hierarchical clustering algo-
rithm iteratively removes the edges with the highest 
edge betweenness score. We apply this method to a 
multigraph as described by Newman (2004) to in-
clude weighted edges. Each edge betweenness value 
is divided by the edge weight. Therefore, the edge 
betweenness value between two very connected 
pairs is lowered so that rather weak connected pairs 
are separated faster than strong connected ones. The 
algorithm has a high complexity due to the recalcu-
lation of the edge betweenness in each iteration – 
O(m2n), where m is the number of edges and n the 
number of vertices. However, it is applicable for 
small networks with up to a few thousand vertices. 

The results of the hierarchical clustering are pre-
sented in a dendrogram, a tree diagram, which illus-
trates the community structure of the graph (see 
Figure 1). Since we have no a priori knowledge 
about the number of communities that exist in a 
network, we need an indicator on where to partition 
the dendrogram to obtain a meaningful network par-
tition. For this purpose, we use the quality function 
proposed by Newman and Girvan (2004) to deter-
mine the best dendrogram cut which is based on the 
concept of modularity. The quality function Q is de-
fined as: 

2)( eeTreeeQ
i

ki
ijk

ijii −=−=∑ ∑  , 

where eii is the fraction of edges in the original net-
work that connect two vertices inside the commu-
nity i and eij the fraction of edges that connect verti-
ces in community i to those in community j. ||x|| in-
dicates the sum of all elements in x. Q has a value 
between 0 and 1. Values above 0.3 appear to indi-
cate a significant community structure. Values ap-
proaching 1 indicate a strong community structure. 
 

2.2   Community Transitions 
Since the interactions between participants and the 
set of participants are not static but change over 
time, we use the representation of the network but 
consider the graph as dynamic. Vertices as well as 
edges appear and disappear from the graph through 
time. We define the dynamic graph gt as a graph 
which consists of all vertices and edges that are ac-
tive in the interval t. If all interactions would be ag-
gregated over time to G by summing up all gi all in-
formation about the temporal development would be 
lost. Therefore, we define gt as a sliding time win-
dow over time interval t that spans a set of interac-
tions. In other words, all interactions that take place 
in this interval t are aggregated to gt.  

After defining the interval we can partition the 
graph over time into equidistant time slots, each slot 
starting when the last slot finished. This modus is 
called a non-overlapping sliding window. An over-
lapping sliding window partially overlaps with the 
prior window. The degree to which it overlaps must 
be defined. We apply an overlapping window since 
it smoothes out the gaps that sometimes occur be-
tween two intervals.  

Each window is considered a static representa-
tion of the network in the chosen interval. At first 
we apply the community detection mechanism as 
described in the previous section to obtain a com-
munity structure for gt. { }ttt g

n
gg ccC ,...,1=  is the set 

of communities that are detected in gt. To determine 
whether a community persists over time we must be 
able to assess if a community xg

ic is the same as a 

community yg
jc . Qualitatively we would define that 

a community in a subsequent interval is the same, if 
the characteristic features are similar. In the easiest 
case we would say that this is the set of participants. 
We therefore define that community xg

ic and com-
munity yg

jc  are the same if they share a given per-
centage of members. The appropriate percentage 
depends on the community type, the type of rela-
tions and the intent of the observer. If a community 
e.g. consists of a small set of very active core mem-
bers and a high number of less connected members 
that often change, the percentage should be rather 
small. Otherwise, the community might not be con-
sidered the same just because many of the other 
“uncharacteristic” members changed, even though 
the most active core members are still detected as a 
community in different intervals. 

Besides deciding whether two communities are 
the same, which would mean that a community per-
sists over time, we can also observe if a community 
merges with another community or if it splits into 
separated communities. These developments can be 
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triggered by internal factors such as a change in 
leadership as well as external factors, e.g. adver-
tisements. The challenge is to determine the factors 
that positively trigger the community development 
to offer appropriate organizational and technological 
infrastructures. 

 
3   Temporal Community Analysis 
To track the development of established communi-
ties and to visualize the transitions we developed a 
software environment that supports temporal graph 
analysis based on the community detection methods 
described in Section 2. In the following section, we 
briefly describe the functionality of the software. 
 
3.1 Visualizing Community Structures 

The hierarchical divisive clustering algorithm is 
used as described in Section 2.1 to find the commu-
nities in each interval. The results are displayed in a 
dendrogram. The user can experiment on the impact 
of different clusterings on the quality measure by 
moving a slider as can been seen in Figure 1.  

Figure 2 has two areas: a list of all detected 
communities in the left window and the curves on 
the right. The horizontal axes represent the respec-
tive time windows.  

The lowermost curve displays the total number 
of interactions between the chosen group and the to-
tal number of interactions of all group members 
with other participants of other communities. It can 
be seen that the chosen group is only active for 
about 6 weeks, but some members have an active re-
lation with external participants. The middle and the 
uppermost diagram show how similar the internal 
community interaction behavior is over time. In the 
middle diagram the vertical axis depicts the correla-
tion distance as a similarity measure for the groups 
in different periods. It can be seen that the group 
shows up in two time windows with almost the same 

members but the structure changes very quickly and 
the group disappears. In the uppermost diagram the 
y-axis displays the Euclidian distance as a similarity 
measure. The more similar a group interaction in 
two periods, the lower is the value of the Euclidian 
distance. For both measures we compare the similar-
ity between the chosen interval and all other inter-
vals and for two succeeding intervals. The statistics 
can for example be used to find point in time where 
the interaction behavior of a group changes com-
pared to previous intervals. If several groups show 
similar behavior, this might be an indication for a 
change in the overall community structure. 

3.2 Visualizing Community Dynamics 

In Figure 3 we see a static representation of a tem-
poral community evolution. In this visualization, 
each detected community is represented as a vertex. 
The size of the vertex corresponds to the size of the 
community. Vertices that are connected by an edge 
are similar. Communities with the same members 
over several periods are positioned closer in the 
graph whereas communities with no members in 
common are more separated from each other. Fur-
thermore, the different colors help to distinguish be-
tween similar communities and those that are not. 

The user can choose for how many periods the 
community must at least exist to be displayed. If a 
long period is chosen, the user obtains only long-
term community whereas in another case it might be 
of interest to find only short-term communities. An-
other slider for the time distance defines how con-
tinuous the communities are connected, separating 
communities by a maximum distance. Furthermore, 
one can define the observation period and filter the 
vertices so that the communities are displayed only 
in a selected period. The described properties can be 
used to filter communities so that the graph only 
shows data that is useful for a current analysis. 

Figure 1: Clustering results in a dendrogram 

Figure 2: Statistics for temporal development for a 
chosen community 
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Note that in the obtained graph in Figure 3 the 
temporal development can not be observed, as the 
communities are only displayed according to their 
similarity. In a next step, the filtered and clustered 
data is copied to a community history view, which 
allows seeing temporal developments by using the 
coordinates from the graph and putting the vertices 
on the horizontal axis according to the period they 
appear in (see Figure 4). The position transforma-
tion allows tracking the development along the time 
axis. Each community is now represented as a rec-
tangle where its height corresponds to the size of the 
community. All communities that are considered as 
similar according to the actual settings are con-
nected by edges and have the same color.  

The left side of the screenshot in Figure 4 shows 
all communities over time in an overview window. 
The x-coordinate of each community is the same as 
in Figure 3. The y-coordinate is determined by the 
interval in which the community was detected. 
Thus, communities on the left are observed in earlier 
periods than those on the right.  

The analyzed community shows different devel-
opments. In the lower part of the left side we can see 

an insolated community in light blue and one in red. 
Both existed over just a few periods. Some members 
of the red community joined another community 
which is shown in dark blue. In the cutout view on 
the right we can furthermore observe a community 
in yellow that existed over a longer period but died 
at some time. We can see that smaller communities 
merge to a bigger one but split very fast to several 
smaller communities. Points in time when these 
changes occur might be of interest for the user, as 
they indicate an external or internal event that influ-
enced the community development. These effects 
might then be deliberately used to improve the es-
tablishment of communities. 

 
4.   Summary 
We presented a software platform which allows for 
the analysis of the temporal development of com-
munities. The gained insights can be helpful to un-
derstand community transition types and its triggers. 
This knowledge can be used to provide an appropri-
ate technological as well as organizational infra-
structure to foster community building.  
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Abstract

Recent developments have meant that network theory is making an important contribution to the study
of the topology of biological networks such as protein interaction (PI) networks. The identification
of differentially expressed genes in DNA-microarrays experiments is a known source of information
regarding the main molecular pathways involved in disease. Thus, considering PI analysis and gene
expression studies together may provide us with a better understanding of the topological aspects
of multifactorial neurodegenerative diseases such as Multiple Sclerosis (MS) and Alzheimer Disease
(AD). The aim of this study was to assess whether degree of connectivity is a key property that dif-
ferentiates between implicated (seed-proteins) and non-implicated nodes (neighbors) in MS and AD.
We used PIs experimentally validated and an interaction distance threshold from each seed group to
obtain two networks (one MS-network and one AD-network). Results revealed for both diseases a
lower degree of connectivity in seed proteins than in their neighbors in each PI network. Furthermore,
we found that the MS-network and AD-network included multiple pathways and followed a very sim-
ilar exponential degree distribution but with different clustering coefficient behavior. These findings
reinforce the multifactorial nature of both diseases and might lead to new therapeutic strategies.
keywords: Alzheimer Disease, differentially expressed genes, microarrays, Multiple Sclerosis, network
topology

1 Introduction

The structural and functional relationships underlying
the organization of living systems imply the need to
coordinate molecular interactions, principally those
involving gene expression and protein activity. Al-
though the genome is (almost) the same in each cell
population of a given organism, dynamic changes
in gene expression and thus in the protein content
depend on the functional state of the cell (Lodish,
2002).

Genome-wide expression profiles using DNA mi-
croarrays, together with the development of bioin-
formatics approaches (Villoslada, 2006), enable us
to model both genetic and protein interaction (PI)

networks and thus to understand how a biological
network operates (Xia, 2004). From a systems
point of view (Hiesinger, 2005), the arrangement of
biomolecular networks from gene expression data
based on known interactions permits to understand
the basic mechanisms upon which the complexity and
adaptability of a living cell is founded. This infor-
mation also helps us to decipher processes involved
in illness, for instance the molecular heterogeneity
of cancer (Rhodes, 2005). However, and consistent
with the model of multifactorial diseases, it is diffi-
cult to find genes that account for direct genotype-
phenotype correlation (Gunsalus, 2005). Thus, net-
work modelling and topological analysis may pro-
vide additional knowledge about common properties
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of genes and proteins involved in many severe dis-
eases of multifactorial nature, where the cause of the
pathogenesis does not depend on the malfunction of
a single gene or protein. In addition, from a medical
point of view, systems biology approaches to com-
plex diseases might represent a standpoint to identify
new therapeutic targets. In this case, the analysis of
genes, proteins and pathways interactions might sug-
gest common properties of the best candidates to be
targeted by therapy. In addition, the understanding of
the emergent properties of a system might allow the
identification of new targets that will not be captured
with a molecular approach (Kitano, 2004).

Multiple Sclerosis (MS) is a chronic inflammatory
and neurodegenerative disease of the central nervous
system (CNS) (Steinman, 2001). Its etiology remains
elusive, but the interplay between environmental and
genetic factors is ultimately thought to be critical to
the development of the disease. MS is considered to
be an autoimmune disease because of the presence of
inflammatory infiltrates in the brain, in absence of in-
fection, and its association with HLA alleles, among
other factors (Oksenberg, 2001). The chronic inflam-
matory activity within the CNS is the main mediator
of tissue damage, even in the late neurodegenerative
stage of the disease, which includes widespread de-
myelination and axon loss (Bruck, 2005). In addi-
tion to the autoimmune processes, MS also has a neu-
rodegenerative component whereby axons and neu-
rons are lost through unknown processes in the late
chronic stages of the disease. Several lines of evi-
dences suggest that dying-back degeneration of de-
myelinated axons is the most important factor in MS
neurodegeneration (Imitola, 2006). MS is a multi-
factorial disease in which many pathways of the im-
mune system and CNS are involved (Fernald, 2005).
Current therapies ameliorate in part the inflammatory
process, but more effective therapeutical approaches
are required to completely stop disease progression
and prevent neurodegeneration.

Alzheimer Disease (AD) is the most common
neurodegenerative disease, representing one of the
biggest unmet needs in modern medicine (Walker,
2004). AD is characterized by the loss of neurons in
association with the presence of oxidative stress, ax-
onal dystrophy, mature senile plaques and neurofib-
rillary tangles (Cummings, 2004). A set of muta-
tions in genes involved in amyloid beta and tau path-
ways have been associated with hereditary AD and
in conjunction with neuropathological findings, the
amyloid and tau hypothesis for the pathogenesis of
AD has been put forward. However, current evi-
dence suggests that sporadic AD is a multifactorial

disease in which many pathways are involved (Cum-
mings, 2004). Because the available therapies are
only symptomatic (Scarpini, 2003) and considering
the epidemic proportions of this disease in western
countries, the development of new therapies to stop
its progress is a major health priority.

In order to understand more about the basis of neu-
rodegenerative diseases, the aim of this study was to
assess the degree of connectivity between proteins
whose genes were differentially expressed in MS and
AD and their protein neighbors. In short, we tested
whether the degree of connectivity is a property that
differentiates between implicated (seed-proteins) and
non-implicated nodes (neighbors). We also studied
the topological properties of both MS-network and
AD-network with a special focus on degree and clus-
tering coefficient distributions.

2 Materials and Methods

2.1 Definitions
Some definitions were introduced to better explain
the development of our topological studies. There are
tree concept definitions for each disease and two gen-
eral terms.

-MS seed-proteins: proteins whose genes were dif-
ferentially expressed in previous microarray studies
of MS (Bomprezzi, 2003).

-MS-neighbors: nodes selected as consequence of
adding experimentally validated interactions starting
from MS seed-proteins.

-MS-network: network that includes MS seed-
proteins, MS-neighbors and their interactions.

Thus, MS-network nodes can be partitioned into
two groups: MS seed-proteins and MS-neighbors.

-AD seed-proteins: proteins whose genes were dif-
ferentially expressed in previous microarray studies
of AD (Walker, 2004).

-AD-neighbors: nodes selected as consequence of
adding experimentally validated interactions starting
from AD seed-proteins.

-AD-network: network that includes AD seed-
proteins, AD-neighbors and their interactions.

Thus, AD-network nodes can also be parti-
tioned into two groups: AD seed-proteins and AD-
neighbors.

-Disease-networks: this term is used to refer to
both MS-network and AD-network.

-Degree: The so-called degree of connectivity. In
this paper, it represents the number of experimentally
validated interactions (links) that are connecting one
protein (node) to its neighbors.
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Table 1: Genes identified in MS expression profile
study by Bomprezzi (2003).

Gene name Brief protein description k∗
JUN Transcription factor 88
HSPA1A Heat shock protein 66
BCL2 Apoptosis regulator 60
ZAP70 Tyrosine kinase 32
ATM Serine kinase 26
SPTAN1 Spectrin α chain 24
MADH7 Mothers ag. decapentaplegic 18
ITGA6 Integrin alpha-6 17
TRAC T-cell receptor region 14
HLA-DRA MHC class II antigen 13
SCYE1 Multisynthetase complex 11
PAFAH1B1 PAF acetylhydrolase 11
SCYA3 Cytokine A3 precursor 10
IL7R IL-7 receptor precursor 8
DNAJA1 DnaJ homolog 8
XPC DNA-repair protein 7
SEC34 Golgi complex component 7
PPP2R5C Ser/Thr phosphatase 4
DNTT Nucleotidylexotransferase 4
TIMP1 Metalloproteinase inhibitor 3
SPTBN1 Spectrin β-chain 3
SERPINH2 Sphingosine kinase 2 3
TNFRSF7 TNF receptor precursor 3
GOLGA4 Golgi autoantigen 2
PTP4A1 Tyr-phosphatase 2
ZNF148 Zinc finger protein 2
CCR7 C-C chemokine receptor 2
IKKE Inhib. NFκ-B kinase 1
NKTR NK-tumor protein 1
DPPIV Seprase 1
CSK2 Cyclin kinase subunit 1
DGKA Diacylglycerol kinase 1
PIK3R4 PI-3-kinase 1
BRF1 Butyrate response factor 0
CD83 CD83 antigen precursor 0
BAZ2B Bromodomain 0
TTC3 Tetratricopeptide protein 0
ZNF43 Zinc finger protein 0
9235 NK cells protein precursor 0
IFI30 Thiol reductase precursor 0
PDE7A cAMP-phosphodiesterase 0
SLC35A1 CMP-sialic acid transporter 0
TCF7 Transcription factor 0
MAL T-lymphocyte maturation 0
H1F2 Histone H1.2 0

∗Degree (see section 2.3).

It is important to remark that we did not consider
neighbors as new proposals for proteins implicated in
disease, but they were taken to capture the network
context where seed-proteins were involved.

2.2 Gene expression data
2.2.1 Multiple Sclerosis

For MS-network construction and analysis, we
selected seed-proteins from previously published
data (Bomprezzi, 2003) listed in Table 1. These in-
cluded 45 genes differentially expressed in peripheral
blood mononuclear cells from 24 MS patients with
respect to 17 controls, identified by using cDNA mi-
croarrays.

2.2.2 Alzheimer Disease

The set of selected seed-proteins for AD-network
modelling and analysis is listed in Table 2. It contains
the gene products of 37 differentially expressed genes
detected elsewhere (Walker, 2004) using cDNA-
microarrays from postmortem cerebral RNA extrac-
tions in 5 normal and 4 clinically diagnosed AD pa-
tients.

2.3 Network modelling
Starting from seed-proteins involved in MS, we ob-
tained a PI network (MS-network) throughout the in-
teractions of these proteins. Figure 1 shows a gen-
eral scheme of the approach performed in this paper.
We considered a minimum of one thousand neighbors
as an appropriate size to analyze the network context
where the seed-proteins were involved. Hence, we
expanded each disease-network until the one thou-
sand nodes mark was reached. A depth-2 configura-
tion allowed us to obtain 1127 neighbors in the MS-
network, which included proteins directly interacting
with seed-proteins. We applied the same approach us-
ing AD seed-proteins, obtaining 331 neighbors using
depth-2, and 1640 neighbors using depth-3 expansion
(which includes direct and with one intermediary in-
teractions). Thus, we used depth-3 for AD-network
as expanding threshold.

The growth of each network was carried out with
STRING database (von Mering, 2003, 2005)1. The
parameters used as criteria for network growing in the
STRING database were: active prediction method:
experiments; confidence score: 0.7 -high confidence-
; network depth: 2-3; and edge scaling factor: 80%.
This configuration involves just those experimental

1http://string.embl.de/
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Table 2: Genes identified in AD expression profile
study by Walker (2004).

Gene name Brief protein description k∗
EEF1A1 Elongation factor 70
B2M β-2-µglobulin precursor 17
GRP58 Disulfide isomerase 16
CLU Clusterin 14
DTNA Dystrobrevin α 14
CD81 Surface antigen 13
HLA-B Histocompatibility antigen 12
ATF4 Transcription factor 11
KRT8 Keratin, cytoskeletal 11
APLP1 Amyloid-like precursor 8
C4B Complement C4 precursor 8
RAPD1GDS1 Stimulatory GTP exch. 7
183 Angiotensinogen precursor 6
CDC10 Septin 7 6
RANGAP1 GTPase-activating protein 6
FTL Ferritin light chain 5
NEDD5 Septin 2 5
HBB Hemoglobin beta chain 4
DMPK DM protein-kynase 3
GSTM2 Glutathione S-transferase 3
PRDX1 Peroxiredoxin 3
MT1G Metallothionein 2
P60201 Proteolipid protein 2
PLEKHB1 Evectin 2
HBG1 Hemoglobin epsilon chain 1
HBG2 Hemoglobin epsilon chain 1
IGHM Ig α-1 chain C region 1
LIMS2 Senescent antigen-like 1
10099 Tetraspanin 3 0
ADD3 Gamma adducin 0
CHN2 β-chimaerin 0
OSBPL3 Oxysterol binding protein 0
PCL1 PrenylCys oxidase prec. 0
PCSK1N Proprotein convertase inh. 0
PTS 6-pyruvoyl THB-synthase 0
RPL31 60S ribosomal protein L31 0
TU3A TU3A protein 0

∗Degree (see section 2.3).

evidences of interactions with high confidence, which
were extracted from the database as valid links for
each PI network. A detailed description of each pa-
rameter can be found elsewhere (von Mering, 2003).
We did not consider neither the direction of each pro-
tein interaction nor self interactions.

Figure 1: General scheme of the approach for each
disease.

2.4 Topological analysis

We analyzed the degree distribution P(k),

P (k) =
n(k)
N

, (1)

where k is the number of links connected to a given
node and n(k) the number of nodes with degree k.

In order to assess the degree distribution, a power
law approximation (Barabási, 1999),

P (k) ∼ k−γ , (2)

was first studied plotting P(k) versus non-zero k in
log-log scale; the so-called frequency-degree. The
scaling exponent γ was obtained from the slope ab-
solute value of the least-squares fit.

The clustering coefficient for a node i with ki

neighbors, Ci(ki), represents the ratio of the number
of actual connections between the neighbors of node
i to the number of possible connections:

Ci(ki) =
2ni

ki(ki − 1)
, (3)

where ni is the number of links connecting the ki

neighbors of node i to each other (Nacher, 2004).
The average clustering coefficient (i.e., the cluster-

ing of nodes with respect to k) provides information
about the modular organization of networks (Almaas,
2006),
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C(k) =

∑
i:ki=k Ci(ki)

n(k)
. (4)

The rank-degree distribution, Rank(k), represents
the number of nodes with a degree greater than k,

Rank(k) = n(K > k) =
m∑

k′=k+1

n(k′) , (5)

with m being the maximum degree found (Tanaka,
2005b).

It is important to notice that Rank(k) provides pre-
cise information to elucidate whether degree distribu-
tion is better explained either as a power law or as an
exponential distribution (Tanaka, 2005b).

P(k), C(k) and Rank(k) were calculated from the
STRING files (simple tab delimited flatfiles), which
contain all the nodes and interactions obtained using
the methodology described in section 2.3.

2.5 Gene Ontology
In order to assess the multifactorial character of the
biological pathways in which seed-proteins were in-
volved following the Gene Ontology2 (GO), we stud-
ied those pathways arising when genes correspond-
ing MS seed-proteins or AD seed-proteins were com-
pared to complete human proteome (Swissprot iden-
tifiers). This approach was carried out using the
FatiGO web tool (Al-Shahrour, 2004)3.

2.6 Statistical analysis
Frequency-degree linear approximation were carried
out with the least squares fitting method. Rank-
degree curves were also fitted as a second order
exponential decay. To compare the degree dis-
tribution between all the network nodes and the
seed-nodes, we performed an ANOVA test using
Statgraphics Plus 5.1 software. The re-
gression lines were compared using the Comparison
of Regression Lines Analysis Dialog Box, which auto-
matically constructs the necessary indicator variables
for comparing two or more simple regression models.
Finally, we used a U Mann-Whitney test to compare
degree between seed-proteins and neighbors for each
disease.

The level of significance was set at p<0.01. P-
values associated to pathways under FatiGO3 anal-
ysis were corrected by false discovery rate multiple
comparison method.

2http://www.geneontology.org/
3http://fatigo.bioinfo.cipf.es/

3 Results

3.1 Multiple sclerosis
The MS-network is shown in Figure 2. This map
contains 1172 nodes, including 45 seed-proteins and
1127 neighbors. Twelve seed-proteins had no links
(i.e., no experimental evidence of interactions), and
8 nodes (including 1 seed-protein) formed an inde-
pendent small fully interlinked net. The degree cor-
responding to each MS seed-protein node is listed in
Table 1.

Figure 2: Protein interaction of the Multiple Sclerosis
network (MS-network).

The frequency-degree distribution, the clustering
coefficient and the rank-degree distribution of MS-
network nodes are shown in Figure 3. We found a
dependence of P(k) respect to k in both MS-network
nodes and MS seed-proteins. According to equa-
tion (2), the linear approximations (slope = -1.48 and
slope = -0.43) explained these dependencies as power
laws P (k) = k−1.48 and P (k) = k−0.43 respectively.
Furthermore, clustering coefficient also followed a
power law respect to k, with (γ = 0.68). On the other
hand, rank-degree plot revealed that degree distribu-
tion was better explained as exponential (R2 = 0.99)
instead of linear (R2 = 0.90).

The comparison of MS-network and MS seed-
proteins regression lines provided a statistically sig-
nificant difference (p<0.001). Furthermore, degree
group comparison indicated that seed-proteins degree
was significantly lower than MS-neighbors degree
(p=0.003).

Finally we assessed whether some functional path-
ways were overrepresented in the genes set corre-
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sponding to MS seed-proteins. We found that none
of the 22 biological modules detected (GO level 3)
were statistically overrepresented.

Figure 3: Topological analysis of the MS-network
(log-log plots). Top: frequency-degree distribution
of MS-network nodes (blue-circles) and MS seed-
proteins (red-triangles). Middle: clustering coeffi-
cient distribution of MS-network nodes. Bottom:
rank-degree distribution of MS-network nodes.

3.2 Alzheimer Disease

The AD-network contains 1687 nodes, including 47
seed-proteins and 1640 neighbors (figure 4). Table 2
includes the degree of connectivity for each seed-
node.

Figure 4: Protein interaction of the Alzheimer Dis-
ease network (AD-network).

The frequency-degree distribution, the clustering
coefficient and the rank-degree distribution of AD-
network nodes are shown in Figure 5. We found a
dependence of P(k) respect to k in both AD-network
nodes and AD seed-proteins. According to equa-
tion (2), the linear approximations (slope = -1.58 and
slope = -0.36) explained these dependencies as power
laws P (k) = k−1.58 and P (k) = k−0.36 respectively.
On the other hand, clustering coefficient resulted to
be independent from k (γ = 0.28 and R2 = 0.08). Fi-
nally, rank-degree plot revealed that degree distribu-
tion was better explained as exponential (R2 = 0.99)
instead of linear (R2 = 0.81).

The comparison of AD-network and AD seed-
proteins regression lines provided a statistically sig-
nificant difference (p<0.001). Furthermore, degree
group comparison indicated that seed-proteins degree
was significantly lower than AD-neighbors degree
(p=0.005). These results were very similar to the ob-
tained in the MS study in section 3.1.

Finally we assessed whether some functional path-
ways were overrepresented in the genes set corre-
sponding to AD seed-proteins. We found that none of
the 9 biological modules detected (GO level 3) were
statistically overrepresented.
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Figure 5: Topological analysis of the AD-network
(log-log plots). Top: frequency-degree distribution
of AD-network nodes (blue-circles) and AD seed-
proteins (red-triangles). Middle: clustering coeffi-
cient distribution of AD-network nodes. Bottom:
rank-degree distribution of AD-network nodes.

3.3 Common characteristics between
MS and AD networks

As indicated in Tables 1 and 2, we found a low de-
gree in seed-proteins respect to the degree of its PI
neighbors in both diseases, with only 3 (MS) and 1
(AD) highly connected seed-proteins (k>60). In ad-

dition, direct interactions between seed-proteins were
very low: 4 direct interactions in MS-network, and
5 in AD-network. There were 586 common pro-
teins to MS and AD networks. In order to detect the
possible topological distribution relationship between
both neurodegenerative disorders, the disease net-
works and the seed-proteins sets were independently
compared through regression line analysis (Figure 6),
and no significant differences between slopes were
detected neither between disease-networks (p=0.31)
nor between seed-proteins (p=0.52).

Figure 6: Linear regression comparison between
disease-networks and seed-proteins.

4 Discussion

4.1 Topology of MS and AD networks
Network theory can provide a useful tool to study
the complexity of neurodegenerative diseases. In the
present study we report a novel approach to study PI
networks, based on the products of differentially ex-
pressed genes of MS and AD. The network growth
was carried out expanding the network through ex-
perimentally validated protein interactions.
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Network stability, dynamics and function is gen-
erally characterized by determining the topology of
the map, i.e., the configuration of its nodes and the
connecting edges (Han, 2005). One of the most suc-
ceeding features analyzed has been the degree distri-
bution, and whether or not it followed a power law;
the so-called scale-free property. Roughly speaking,
these studies were aimed to characterize the proper-
ties of real networks in basis on their topological fea-
tures. For example, networks with a SF topology are
known to be resistant to random failure and vulner-
able to targeted attack, specifically against the most
connected nodes (hubs). However, it has recently
been shown that metabolic networks are supported
by different modular scales, with a power law degree
distribution of the global system but an exponential
behavior in modules. As such they are described as
scale-rich (SR) networks (Tanaka, 2005a).

Our results reveal that MS-network and AD-
network may be better adjusted to exponential than
to power law distributions. The power law behavior
of P(k) together with the dependence of C(k) versus
k, point to a scale-free distribution (SF) with an in-
herent modularity of the MS-network. However, the
exponential behavior of the rank distribution agree
with a SR -instead of a SF- topology. The particu-
lar degree distribution of the seed-proteins involved
in MS also showed a power law topology. In the
case of AD, γ exponent values of AD-network nodes
and AD seed-proteins were very similar to the ob-
tained in MS-network nodes and MS seed-proteins
respectively. Although a constant behavior of C(k)
in AD-network also point to a scale-free distribution
(SF), the exponential behavior of the rank distribu-
tion agree with a SR topology. In this sense, recent
studies support that other biological networks, such
as the complete human PI map, filtered yeast interac-
tome dataset and metabolic networks, could be better
explained as SR networks (Tanaka, 2005a,b). These
networks would not be so hub-dependent as SF are,
and could be formed by exponential subnetworks and
critical nodes that might not be so k-dependent (ac-
cording with both MS-network and AD-network). In
addition, the clustering coefficient dependence of k
point to a inherent modularity of the MS-network, but
not completely reaching the characteristic hierarchi-
cal network. Hierarchical modularity is detected by
the scaling of the clustering coefficient, which should
follow C(k) ∼ k−1 (i.e., a straight line of slope -1 on
a log-log plot) (Barabási, 2004).

On the other hand, both the MS and AD network
may be considered as proportional SR samples of
the complete human protein-interaction map recently

studied (Tanaka, 2005b). This is particularly the case
if we take into account that the rank-degree distribu-
tion is exponential and the frequency-degree distribu-
tion is linear, with very similar exponents. Regard-
ing the identification of common properties among
those genes involved in neurodegenerative disorders,
these facts provided very interesting results under a
topological analysis: multiple pathways affected by
proteins with low degree, following very similar SR
distributions (Tanaka, 2005a).

4.2 Seed-proteins connectivity

During the last decade, network studies have been ap-
plied to biological data bearing in mind that the de-
gree of connectivity is a key property of any network.
The most common approach to identify key nodes
consists of obtaining networks from high throughput
data and having obtained the network, searching for
the highest connectivity nodes (hubs). The underly-
ing assumption was that these hubs could be critical
to explain pathogenesis of diseases.

Our study was performed from a novel viewpoint.
Starting from critical nodes (in terms of differentially
expressed genes) we analyzed whether the connectiv-
ity was higher or lower than the connectivity of the
PI neighbors. Thus, we found that seed-proteins con-
nectivity was lower than PI neighbors degree. To our
knowledge, these properties have not been reported
before and they situate seed proteins in peripheral re-
gions of the network, distributed along several path-
ways that could be involved in disease. Somehow this
enters into conflict with the hub relevance hypothe-
sis (Jeong, 2001), at least in these two neurodegen-
erative diseases. Therefore our results support the
application of strategies other than those previously
applied, whereby only hubs that could compromise
the robustness of networks were generally searched
(Barabási, 2004).

The etiology of MS and sporadic AD still remains
elusive and many environmental and genetic factors
have been proposed. In this sense, our results strongly
support the multifactorial nature of these diseases,
due to the fact that many pathways participates some-
how in both diseases, any of them being predominant.

4.3 Etiopathogenic and therapeutical
implications

We can consider complex diseases as an evolutionary
stage in which the pathogenesis process hijacks the
robustness of the biological pathways; this may be
followed by cascading failures in such pathways (Ki-
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tano, 2004, 2006). In this sense, it may be necessary
to target many of the pathways involved, although fol-
lowing a systems biology rationale based on the dy-
namics and topology of the networks involved. The
aim of this therapy would be to drive those pathways
to a non-pathological state or at least, to a less delete-
rious state.

The topological implications of the claimed SF
properties of biological networks suggests that the
best therapeutic targets, in order to modify the net-
work behavior, should be the genes (or proteins) cor-
responding to hubs in the network. However, our
findings suggest that low connected proteins might be
more appropriate therapeutic targets, at least in neu-
rodegenerative diseases, than hyper-connected ones.

The fact that in both diseases (MS and AD) and in
two different tissues analyzed (blood and cerebral tis-
sue), seed-proteins were low connected nodes taking
part in many different pathways, strengthen the multi-
factorial pathogenesis of neurodegenerative diseases.
Our results suggest that in order to modify the dis-
ease course we need to target many genes or proteins
in several pathways. Another reason why hubs might
not be good therapeutic targets is because their criti-
cal role in the network modules might prevent them
from fluctuating substantially. For the same reason,
we can speculate that networks will poorly tolerate
the modification of hub behavior without spreading
such changes along the network and, in this way, in-
ducing significant side effects.

4.4 Conclusions

The results presented in this paper indicate that
both neurodegenerative diseases (MS and AD) share
as common characteristics the low degree of seed-
proteins and the degree-distribution similarities found
between disease networks, even though many differ-
ent pathways are involved depending on the disease.
These findings locate seed-proteins mainly in periph-
eral regions of the PI map (in terms of degree), in-
volved in many pathways (as FatiGO and low direct
interactions results indicated) and integrated in two
subnetworks (respect to Human complete proteome
network) with very similar exponential degree distri-
butions but with different modular organization. In
addition, and as stated before, no significant biologi-
cal process were overrepresented to the seed-proteins
of MS and AD analyzed when compared to the whole
human genome. This results are likely to be ex-
plained as a consequence of the multifactorial nature
of both diseases.
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Abstract

In this paper we consider large networks of coupled oscillators. We choose to illustrate this using a
general class of range dependent networks where the pairwise coupling is a probabilistic function of
distance (range) between the nodes, and each node represents an oscillator with its own intrinsic phase
and natural frequency of oscillation. Range dependent networks exhibit the “small world” phenom-
enon, being effectively superpositions of many networks each operating over different range lengths.
We provide an asymptotic analysis in terms of a network coupling parameter that gives a simple ana-
lytic description of the coupled dynamics and which agrees well with numerical experiments.

1 Introduction

The emergent behaviour of populations of dynami-
cal systems brought about by local pairwise (weak)
coupling is of interest both from the point of view
of the group dynamics and the theory and character-
isation of the underlying networks. Perhaps the sim-
plest nontrivial examples are coupled oscillatory sys-
tems where a local “diffusive” type of coupling gives
rise to spatio-temporal patterns such as localised non
planar waves, target patterns, or spiral waves. When
the underlying network allows “longer range” cou-
plings also even simple entrainment phenomena are
not straightforward. By entrainment (or synchronisa-
tion) of a system of oscillators, we mean a state of
the system, in which all oscillators move together as
one with a possible difference in their phases, which
remains constant for large time. This is a key concept
in the understanding of self-organisation phenomena
of coupled oscillators (see, for example, (K84)).

In (K75) Kuramoto considered networks of oscilla-
tors, in which the coupling between every pair of os-
cillators was identical. Although simple at a glance,
his model was hard to analyse but due to his inge-
nious heuristics and assumptions, he was able to de-
rive some properties about the system he considered.

In this paper we analyse entrainment in large net-
works of coupled oscillators (see, for example, (S00),

(AS04)). We choose to illustrate this using a general
class of range dependent networks where the pair-
wise coupling is a probabilistic function of distance
(range) between the nodes, and each node represents
an oscillator with its own intrinsic phase and natural
frequency of oscillation. Range dependent networks
exhibit the “small world” phenomenon, being effec-
tively superpositions of many networks each oper-
ating over different range lengths (see, for example,
(G02)). We provide an asymptotic analysis in terms
of a network coupling parameter that gives a sim-
ple analytic description of the coupled dynamics and
which agrees well with numerical experiments.

2 Twin coupled oscillators

First, consider the simplest case of two coupled oscil-
lators:

θ̇1 = λ1 + εA12 sin(θ2 − θ1)
θ̇2 = λ2 + εA21 sin(θ1 − θ2)

which has state space the torus with coordinatesθi

mod (2π) for i = 1, 2. Here theAjk are nonnega-
tive coupling coefficients;ε is a nonnegative overall
“strength” parameter to scale the coupling; and the
λi > 0 represent the uncoupled frequencies of the
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separate oscillators. Settingφ = θ2 − θ1 we obtain a
single equation for the phase difference:

φ̇ = λ2 − λ1 − ε(A12 + A21) sin φ, (1)

which is integrable and so a closed form solution is
available. However, qualitative information about the
oscillation can be obtained directly from (1). First
note that the frequencies become entrained for large
time (withφ tending to a stable rest point) if and only
if ε is such that

|λ2 − λ1| < ε(A12 + A21).

If this condition does not hold one of the oscillators
repeatedly “laps” the other.

3 N oscillators coupled via a di-
rected graph

Let us generalise the above situation toN coupled
oscillators. We shall think of them as vertices con-
nected by a directed graph with entraining couplings
defining the non negative weights of directed edges.
Each oscillator is represented by a single phase vari-
able,θi mod (2π), having a natural, uncoupled fre-
quency: whilst each coupling term, say from oscil-
lator k acting on oscillatori, affects to increase or
retard the rate of increase of the phase of oscillator
i, so as to approach the phase of oscillatork. The
state space for the full coupled system is anN di-
mensional torus with coordinatesθi mod (2π) for
i = 1, . . . , N . Specifically, we consider the follow-
ing system on theN -torus:

θ̇i = λi + ε
N∑

k=1

Aik sin(θk − θi), i = 1, . . . , N.

(2)
Introduce then × n coupling matrixA with zeros
on the diagonal andjkth componentAjk, which
represents the weight of the coupling, or edge, from
vertexj to vertexk. The parameterε is a nonnegative
overall “strength” parameter to scale the impact of A;
and theλi > 0 represent the uncoupled frequencies
of the separate oscillators.

Our interest is in whether and how the oscilla-
tors can become entrained with one another, for large
time; producing a baulk oscillation, with their phases
moving together, possibly separated by a constant set
of phase shifts. Like the simple twin-oscillator case
this behaviour depends upon the strength and nature
of the couplings as well as the distribution of their
natural frequencies.

3.1 No Baulk Oscillations for smallε

For anyi andj we have

θ̇i − θ̇j = λi − λj+

ε

(
N∑

k=1

Aik sin(θk − θi)−
N∑

k=1

Ajk sin(θk − θj)

)
.

The left hand side of this equation must vanish when
oscillatorsi and j are entrained (that is when their
phases differ by a constant amount through time). Set

ε∗ = max
1≤i,j≤N

|λi − λj |∑N
k=1(Aik + Ajk)

. (3)

Then if ε < ε∗, θ̇i = θ̇j is impossible for at least one
pair of oscillators and there can be no baulk oscilla-
tion. Note this condition is necessary and sufficient
for no baulk oscillation to exist whenN = 2.

3.2 Asymptotic Analysis of Baulk Oscil-
lations for large ε

We seek an asymptotic solution, valid in the limit of
largeε, representing a baulk oscillation, so that for
some function,θ0(t) say, we have

θi(t) = θ0(t)+ anε-dependent phase shift for oscillatori

for eachi = 1, . . . , N .
Setting ~θ(t) = (θ1(t), θ2(t), . . . , θN (t))T , ~λ =

(λ1, λ2, . . . , λN )T and~1 = (1, 1, . . . , 1)T ∈ RN ,
we shall seek a solution which is in the form of a
baulk oscillation (that is, all phases entrained) where
the phase shifts are represented by a regular expan-
sion in inverse powers ofε:

~θ(t) = θ0(t)~1 +
1
ε
~θ1 +

1
ε2

~θ2 +O
(

1
ε3

)
. (4)

Here~θ1 and~θ2 are vectors orthogonal to~1, so that
the individual phase shifts are distinct from the baulk
oscillation term.

Substituting (4) into (2) and expanding out the sine
terms, we obtain

θ̇0
~1 = ~λ +4~θ1 +

1
ε
4~θ2 +O

(
1
ε2

)
. (5)

Here4 denotes the “Laplacian” matrix associated
with the network coupling matrixA (replacing the
zeroes on the diagonal ofA with the negative of the
corresponding row sums):

4 = A− diag(A~1).
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The Laplacian matrix4 contains information about
the connected nature of the network: it is of huge im-
portance in graph theory (B95). It is easy to see that
zero is an eigenvalue of4 with multiplicity equal to
the number of distinct connected sub networks. With-
out loss of generality we shall assume zero is a sim-
ple eigenvalue - otherwise we may consider each con-
nected sub network separately. In that case4~1 = ~0.

Let e denote the corresponding left unit eigenvec-
tor: eT4 = 0T . Then pre-multiplying (5) witheT

we have

θ̇0e
T~1 = eT~λ +O

(
1
ε2

)
, (6)

which determinesθ0(t). (In the case when4 is a
symmetric matrix the termO (

1
ε2

)
in the right hand

side of (6) vanishes.) Then toO(1) andO (
1
ε

)
we

have~θ1 and~θ2 respectively, determined as the unique
solutions, orthogonal to~1, of the matrix equations:

(
eT~λ

eT~1

)
~1− ~λ = 4~θ1, 4~θ2 = ~0. (7)

First note that~θ2 = ~0. Next, we may write

~θ(t) =

(
t

(
eT~λ

eT~1

)
+ C

)
~1+

1
ε
~θ1 +O

(
1
ε3

)
, (8)

whereC is a constant, and~θ1 can be found by solving
(7) in the subspace orthogonal to~1.

Hence by calculatingeT , the left eigenvector of4
and solving for~θ1 from (7), we can use (8) to estimate
the behaviour of the oscillators for large coupling pa-
rameterε. In fact the experiments in the next section
show thatε needs not be too large. Indeed, for values
of ε not too much greater thanε∗, (8) provides an ac-
curate representation of the behaviour of the system.

Finally, we note that for the network considered
here the second eigenvalue of4 is small (equalling
−0.01528) with corresponding eigenvector~v, often
called the Fiedler vector (F75). Hence~θ1 will typ-
ically be rich in the direction of~v. Now ~v is often
used to explain certain network features (for example,
clustering) and this suggests that the Fiedler vector
~v might also provide information to help understand
different features in the solutions of (2).

4 Numerical Example

Example: We takeN = 100, A a symmetric ran-
dom range dependent matrix with values lying be-
tween zero and0.96, and theλi as independent uni-

formly distributed random numbers within the in-
terval [0.5; 1.5]. Then by direct calculation,ε∗ =
0.47884.

In this caseeT = 1√
N

~1 and so we have from (6)

θ̇0 =
1
N

N∑

i=1

λi =: λ̂.

Hence (8) gives

θi(t) = λ̂t + C +
1
ε
θ
[i]
1 +O

(
1
ε3

)
,

whereθ
[i]
1 denotes theith component of~θ1, and

θi(t)− θj(t) =
1
ε
(θ[i]

1 − θ
[j]
1 ) +O

(
1
ε3

)
. (9)

In Figure 1 we plot the phase differences,θi(t)−θ1(t)
for i = 2, . . . , 100, obtained directly from the numer-
ical solution, fort ∈ [0; 50], for various values ofε
(ε = 0.5, 0.6, 0.8, 2.0, 5.0, 10.0).

Figure 1: Plot ofθi − θ1, for i = 2, . . . , 100, versus
time t, for ε = 0.5, 0.6, 0.8, 2.0, 5.0, 10.0.

The entrainment asε increases is clearly seen in
Figure 1. Indeed, forε = 2.0 the system settles to
baulk oscillation beforet = 250. In Figure 2 we com-
pare the values ofθi(t)−θ1(t) obtained by numerical
solution with 1

ε (θ[i]
1 −θ

[1]
1 ) in order to test the validity

of (9), and hence the validity of the asymptotic analy-
sis leading to equation (8). Clearly, even forε not so
large there is very good agreement between the as-
ymptotic expression and numerical experiment, with
the maximum error being around1.3× 10−4.
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Figure 2: In this Figure we plot, fori = 2, . . . , 100,
the absolute value of the difference betweenθi(t) −
θ1(t) (obtained by numerical solution of (2)) and
1
ε (θ[i]

1 − θ
[1]
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Figure 3: Plot ofθi − θi0 versus time, forε = ε∗ +
0.03.

Lastly, in Figure 3 we show the solution behaviour
for the system withε = ε∗+0.03 for random starting
values. This Figure represents the plot of the terms
θi(t) − θi0(t), wheret ∈ [0; 250] andi0 is such that
λi0 ≤ λi for 1 ≤ i ≤ 100. In our simulation in Fig-
ure 3 we observe that there are two clusters of oscil-
lators entrained withθi0 and two other clusters which
drift away from them. There is an “extreme” oscilla-
tor, which is not entrained to any of the groups, and
two other oscillators, which seem to be attracted by
the clusters of oscillators.
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Abstract

We study geographical networks on a planar space, and show that the cutoff of degree improves the
path length and the tolerance to failures and attacks. We also compare them with the randomly rewired
non-geographical versions. These results are useful for constructing sensor or ad hoc networks.

1 Introduction

In complex network science, the topological struc-
ture called small-world or scale-free attracts interdis-
ciplinary research fields, since it has been commonly
found in many social, biological, and technological
systems (Barabási, 2002). The heterogeneous struc-
ture with many low degree nodes and a few hubs has
good properties in the meanings of economical and
efficient communication by small number of hops in
a connected network with a few links (Cancho and
Solé, 2003) and the robustness against failures (Al-
bert and Barabási, 2000). Moreover, the restriction of
link lengths has been observed, e.g. Internet at both
router and Autonomous System levels (Yook et al.,
2002), road networks, and flight-connection in a ma-
jor airline (Gastner and Newman, 2006) on geograph-
ical spaces. Recent studies of scaling relation be-
tween the path lengths and network size get much at-
tention with the statistical physics approach.

In this paper, considering geographical networks
for urban planning, electric circuits, distributed
robots, sensor networks, communication networks,
and so on, we investigate the effects of geographi-
cal structures on the path length and the robustness
in a family of the planar networks: Random Apol-
lonian and Delaunay triangulation. The planarity is
important not only to avoid interference of the wire-
less beam, or to construct communication lines on
the surface of earth, but also to design efficient rout-
ing methods taking into account the graph properties
such as spanner. In particular, online routing algo-
rithms (Bose and Morin, 2004) that guarantee deliv-
ery of messages using only local information about
positions of the source, destination, and the adjacent

nodes to a current node in the routing have been de-
veloped for planar networks.

2 Geographical Networks

2.1 Planar triangulation

Planar triangulation is a mathematical abstraction of
sensor or ad hoc networks, in which the positions of
nodes are temporarily fixed as base stations of back-
bone networks. Thus, the mobility of node is out of
our scope to simplify the discussion. In computer
science, it is well-known that Delaunay triangulation
is the optimal planar triangulation in some geomet-
ric criteria (Imai, 2000), and widely used in practical
applications for facility location and computer graph-
ics. Moreover, there is an inclusion relation: near-
est neighbor graph ⊂ relative neighbor graph ⊂ min-
imum spanning tree ⊂ Gabriel graph ⊂ Delaunay tri-
angulation (Kranakis and Stacho, 2006). One of the
fundamental techniques for equipping such properties
is diagonal flipping. In a Delaunay triangulation, di-
agonal flips are globally applied to the triangles until
the minimum angle of triangles is not increased by
the exchange of links in a quadrilateral. Such global
process is unsuitable for dynamically constructed net-
works. In contrast, a random Apollonian network can
be generated by local procedures for the subdivision
of a randomly chosen triangle at each time step in the
evolution of network.

Thus, we investigate the communication efficiency
measured by the average distance (defined by the sum
of link lengths on a path) or hops on the optimal paths
and the robustness of connectivity in the typical pla-
nar network models: random Apollonian network in
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complex network science, Delaunay triangulation in
computer science, and a modification to bridge them.

2.2 Delaunay-like scale-free network

Although random Apollonian networks have the sev-
eral advanced scale-free properties and the small-
world effect with a small diameter of graph (Zhou
et al., 2005), some long-range links naturally appear
near the boundary edges. To reduce the long-range
links, we propose a modified model (Hayashi and
Matsukubo, 2005) as follows. The main idea is based
on a strategy for connecting nodes in distances as
short as possible by adding with the diagonal flips in
a Delaunay triangulation.

Step 0: Set an initial planar triangulation in a space.

Step 1: Select a triangle at random and add a new
node at the barycenter. Then, connect the new
node to its three nodes. Moreover, by iteratively
applying diagonal flips, connect it to the nearest
node (or more than one of the neighbor nodes)
within a radius defined by the distance between
the new node and the nearest node of the chosen
triangle.

Step 2: The above process is repeated until the re-
quired size N is reached.

We call our model RA+NN(one/all) that means the
combination with the triangulation in Random Apol-
lonian and the rewiring to the one or all Nearest
Neighbors within a radius as the localization.

Fig. 1 illustrates the linking procedures by itera-
tive diagonal flips: in a quadrilateral that consists of
the shaded triangles, the long-range (crossing) link is
diagonally exchanged to the red link for maximizing
the minimum angle of triangles. The dashed lines are
new links from the barycenter, and form new five tri-
angles with contours in the left of Fig. 1; The inter-
sected solid lines with dashed ones are removed after
the 2nd flips.

Fig. 2 shows the topological characteristic that our
model has the intermediate structure between ran-
dom Apollonian networks and Delaunay triangula-
tions. We can see a heterogeneous structure with
dense and sparse parts: the dense-get-denser may be
corresponded to the subdivision of a service area ac-
cording to the increasing of population with prefer-
ence of aggregation. As shown in Fig. 3, we find that
the degree distributions follow a power-law: k−γRA

in random Apollonian networks (marked by circles),
log-normal: exp((ln k − µ)2/2σ2) in Delaunay tri-
angulations (triangles), and power-law with exponen-

tial cutoff: k−γ exp(−ak) in our models (pluses and
crosses).

1st diagonal flip 2nd diagonal flip

= +

Figure 1: Linking procedures in a Delaunay-like
scale-free network. The intersected lines are exclu-
sive in each shaded quadrilateral.

RA DT RA+NN(one)

Figure 2: Examples of the geographical networks.
RA: random Apollonian, DT: Delaunay triangulation,
and RA+NN: our Delaunay-like scale-free network.
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Figure 3: Degree distribution P (k).

3 Path Length and Robustness

3.1 Weak disorder

In the studies of the optimal path in disordered com-
plex networks (Braunstein et al., 2003; Kalisky et. al,
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2005), each link length is associated with a weight
assumed by exp(δε), where the parameter δ controls
the strength of disorder, and ε is a random number
taken form a uniform distribution between 0 and 1.
As a network approaches the strong disorder limit at
δ → ∞, only the longest link becomes dominant in
the shortest path length defined by the smallest sum
of link lengths on a path between two nodes. At
the limit, the scaling relations of the average short-
est path length 〈D〉 ∼ N1/3 for γ > 4 and 〈D〉 ∼
N (γ−3)/(γ−1) for 3 < γ ≤ 4 has been theoretically
predicted (Braunstein et al., 2003) from the perco-
lation on scale-free networks (Cohen et. al, 2002).
Although the relation is unknown for 2 < γ ≤ 3
because of the singularity in the analysis at γ = 3,
〈D〉 ∼ (ln N)γ−1 has been also numerically sug-
gested (Braunstein et al., 2003).

However, the assumption of length distribution
may be violated on a geometric space, in addition
the strong disorder limit is an extreme case. Thus, to
investigate the strength of disorder in random Apol-
lonian networks, Delaunay triangulations, and the
proposed models, we compare the length distribu-
tions. Fig. 4 shows the distribution P (lij) of link
length lij in each network. The dashed lines with
an equal gap from top to bottom are corresponded
to the distributions of weight 2 exp(δε)/ exp(δ) for
δ = 1, 2, 4, 8, 16, respectively. The factor 2/ exp(δ)
is due to the normalization for the maximum length of
the boundary edges of the initial rectangle (see Fig.
2). We find that random Apollonian networks and
RA+NN(one/all)s have weak disorder with small δ

(Kalisky et. al, 2005), while Delaunay triangulations
have a slightly broad range of disorder as similar to
the exponential decay in the domestic airline flight-
connection (Hayashi, 2006).

3.2 Weak small-world effect

We investigate the average distance of path length
〈D〉 on the shortest paths, the distance 〈D′〉 on the
paths of the minimum hops, the average number of
hops 〈L〉 on these paths, and the number of hops 〈L′〉
on the shortest paths between any two nodes in the
geographical networks. The average means a statis-
tical ensemble over the optimal paths in the above
two criteria (w.r.t distance and hop) for networks in
randomly generated 100 realizations at each size N .
Figs. 5(a)(b) show that RA+NN(one) has the short-
est distance and the intermediate number of hops in
a weak small-world effect, which means the 〈L〉 is
slightly larger than O(ln N) known as the effect in
a scale-free network without geographical structure.
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Figure 4: The distribution of link lengths with weak
disorder.

Note that the shortest path and the path of the mini-
mum hops may be distinct, these measures are related
to the link cost or delay and the load for transfer of
a message. It is better to shorten both the distance
and the number of hops, however their constraints are
generally conflicted, indeed, see Fig. 5.

As shown in Table 1, we find the scaling relations.
We remark that the values of βd and βd′ differ from
γRA − 1 ≈ 2 numerically suggested at the strong
disorder limit (Braunstein et al., 2003), although the
values of βl and βl′ are relatively close to it. In addi-
tion, the values of αl and αl′ are close to 1/3 pre-
dicted at the limit (Braunstein et al., 2003) for the
Erdös-Rényi model as the classical random network
and the Watts-Strogatz model as a small-world net-
work. The nearest αl in Delaunay triangulations is
probably caused by that the lognormal degree distri-
bution resembles the unimodal shapes in Erdös-Rényi
and Watts-Strogatz models rather than a power-law.

Table 1: Estimated values of the exponents in the
forms 〈D〉 ∼ (ln N)βd , 〈D′〉 ∼ (ln N)βd′ , 〈L〉 ∼
(ln N)βl , 〈L′〉 ∼ (ln N)β

l′ , 〈L〉 ∼ Nαl , 〈L′〉 ∼
Nαl′ by a mean-square-error method.

model βd β′

d
αl α′

l
βl β′

l

RA 0.012 -0.039 0.121 0.136 0.920 1.036

DT -0.068 0.416 0.332 0.455 2.525 3.452

RA+NN -0.080 0.151 0.213 0.341 1.622 2.587
(one)

RA+NN -0.106 0.320 0.216 0.346 1.641 2.628
(all)
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Figure 5: The shortest distance and the intermediate
number of hops in our model (marked by red pluses).
The dashed lines correspond to the estimations in Ta-
ble I. Insets show 〈D′〉 and 〈L′〉 on the paths of the
minimum hops and the shortest, respectively.

3.3 Tolerance to failures or attacks

The fault tolerance and attack vulnerability are
known as the typical scale-free properties (Albert and
Barabási, 2000), however the geographical effect on
them are unknown. We compare the tolerance of con-
nectivity in the giant component of the geographical
and the non-geographical rewired networks with the
same degree distribution (Maslov et al., 2004), when
a small fraction f of the nodes is removed.

Figs. 6 and 7 show examples of random failures in
the geographical networks at a small size N = 200
to visualize them. In the similar results, each initial

component remains without isolated clusters. On the
other hand, Figs. 8 and 9 show examples of targeted
attacks to hubs. The random Apollonian network is
the most vulnerable with many isolated clusters since
the star-like stubs at the four corners and the center
nodes of the initial rectangle are disconnected, while
the Delaunay triangulation is relatively robust with-
out such structure.

We investigate these differences quantitatively.
The following results are obtained from the averages
over 100 realizations at a size N = 1, 000. We should
remark that all networks have the same average de-
gree 〈k〉 = 2(3N − 7)/N = 5.986 and the minimum
degree kmin = 3. Therefore, we investigate the toler-
ance at the same level with the total number of links
N × 〈k〉/2. Fig. 10(a) shows the relative size S/N

for the fraction of random failures in random Apol-
lonian networks, Delaunay triangulations, and our
models, where S denotes the size of giant component.
Fig. 10(b) show the robustness of connectivity in the
rewired networks, whose high tolerance is similar to
Barabási-Albert model (Albert and Barabási, 2000)
without geographical structure. As the geographi-
cal effect, it becomes weaker in the order of random
Apollonian networks, RA+NN(one/all)s, and Delau-
nay triangulations with degree distributions from a
pure power-law to the strong cutoff. These results
are not contradictory to the theoretical prediction un-
der the power-law degree distribution with exponen-
tial cutoff (Callaway et al., 2000), since the average
degree 〈k〉 is not constant but smaller as the cutoff
is stronger; the connectivity is weaker in sparse net-
works, however the corresponding strength of cut-
off is in the inverse order of random Apollonian net-
works, RA+NN(one/all)s, and Delaunay triangula-
tions.

Against the attack on hubs selected in the decreas-
ing order of degrees, Figs. 11(a)(b) show the im-
provements in RA+NN(one/all)s from the extremely
vulnerable random Apollonian networks. By the ge-
ographical effect, each network also becomes more
vulnerable than the rewired version. In other words,
the improvement by rewiring is consistent with re-
cent results for an Inet-generated graph as a modeling
of the Internet (Beygelzimer et al., 2005), although it
includes another bias effect of removing links from
higher degree nodes. Note that the weakly inhomo-
geneous Delaunay triangulation is different from a
homogeneous random network, which has the same
behavior against the failures and the attacks at a frac-
tion of removed nodes (Albert and Barabási, 2000).
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(a) RA

(b) DT

Figure 6: Progress of disconnection by random fail-
ures of 0, 4, 8, 16, 32 nodes from top-left to down-
right for (a) random Apollonian network and (b) De-
launay triangulation.

(a) RA+NN(one)

(b) RA+NN(all)

Figure 7: Progress of disconnection by random fail-
ures of 0, 4, 8, 16, 32 nodes from top-left to down-
right for our models: (a) RA+NN(one) and (b)
RA+NN(all).
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(a) RA

(b) DT

Figure 8: Progress of disconnection by targeted at-
tacks on 0, 2, 4, 8, 16 nodes in decreasing order of
degrees from top-left to down-right for (a) random
Apollonian network and (b) Delaunay triangulation.

(a) RA+NN(one)

(b) RA+NN(all)

Figure 9: Progress of disconnection by targeted at-
tacks on 0, 2, 4, 8, 16 nodes in decreasing order of
degrees from top-left to down-right for our models:
(a) RA+NN(one) and (b) RA+NN(all).
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Figure 10: Relative sizes S/N of the giant compo-
nent against random failures in the geographical and
the rewired networks. Inset show the average size of
isolated clusters except the giant component. At the
peak, the giant component disappears.

4 Conclusion

We investigate the effect of geographical structure on
the path length and the robustness of connectivity, fo-
cusing on a family of planar networks called random
Apollonian network and Delaunay triangulation for
communication systems. To reduce long-range links,
we propose a modified model whose degree distri-
bution follows a power-law with exponential cutoff.
We find the weak disorder in the distributions of link
lengths, and suggest the scaling relations of the short-
est path length 〈D〉 ∼ (ln N)βd and of the minimum
hop 〈L〉 ∼ Nαl as similar to the case at the strong
disorder limit (Braunstein et al., 2003). From the sim-
ulations, we conclude that random Apollonian net-
works have a path connected by a few hops but the
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Figure 11: Relative sizes S/N of the giant compo-
nent against attack on hubs in the geographical and
the rewired networks.

path length becomes long including some long-range
links, while Delaunay triangulations have a zig-zag
path connected by many hops but each link is short.
Instead of the superior geometric properties (Imai,
2000), Delaunay triangulations are no longer optimal
in this criteria of the minimum hops. Our model is
totally balanced: the shortest path length is the best,
while the number of hops is the intermediate.

Moreover, we find that the tolerance to failures and
attacks is weakened by the geographical effect. In
particular, random Apollonian networks with a pure
power-law degree distribution are extremely vulner-
able. Although Delaunay triangulation is the most
robust in these models, only it requires global config-
uration procedures that is unsuitable for ad hoc com-
munication. Thus, there is a trade-off between the lo-
calization and the robustness. We will further inves-
tigate the above effect in more wide classes related to
a family of scale-free networks.
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Abstract

Since research trends can change dynamically, researchers have to keep up with new research trends
and undertake new research topics. Therefore, research communities for new research domains are
important. In this paper, we propose a method to discover research communities. The key feature
of our method is a network model of papers and a word assignment technique for the communities
obtained. We show the performance of the proposed method using experiments with real world data.

1 Introduction

As information technologies progress, we can ob-
tain research information faster then before. How-
ever, technologies covering a wide area can change
just as rapidly. Therefore, all researchers must not
only continuously follow new trends of research but
also investigate new research topics. When we un-
dertake new research topics, we need to know the re-
search communities of researchers with the same re-
search topic or same interest. As a result, we need
an effective community mining method for finding
them. In order to find research communities, we
usually use bibliography information. The meth-
ods include co-citation analysis (Small, 1973; Chen
and Paul, 2001) and bibliographic coupling (Kessler,
1963). Although these methods are very useful for
analyzing research topics from the global viewpoint
of all bibliography data, we cannot always under-
stand what the discovered communities represent.
CiteSeer (CiteSeer.IST, 2004) and Google Scholar
(Google, 2004) are able to handle research communi-
ties from a micro viewpoint because they handle co-
author and citation information from bibliographies
and use the information for individual researchers.
Although these systems are good for finding local
communities involving an author, they are not suit-
able for finding research communities close to the
author. Börner et al. (Börner et al., 2005) proposes
to use co-author networks to find research commu-
nities by using weighted graphs. Their system uses
heuristics to separate communities without interac-
tion. Ichise et al. (Ichise et al., 2005) proposed a

community mining method based on the interaction
of users. Although the proposed system of Ichise et
al. supports community mining for both a global view
and a local view with several mining indexes, it does
not identify the research topics of the communities
obtained. In this paper, we propose a method to dis-
cover research communities with identified topics.

The present paper is organized as follows. In Sec-
tion 2, we discuss the proposed method for research
community mining. In Section 3, we describe the ex-
perimental evaluation of our method and then discuss
the results. Finally, in Section 4, we present our con-
clusions.

2 Research Community Discov-
ery

2.1 Network Model of Research Com-
munity

Although several network models using bibliogra-
phies to represent research communities have been
proposed (Ichise et al., 2005), in this paper, we fo-
cus on the co-author relationships of a research paper
to find the research communities. First, we assume a
simple paper model. This model consists of keywords
and author names. In this case, we can consider an
author’s work on a research topic by noting the key-
words. As a result, authors who write a paper collab-
oratively share the same interest, represented by the
keywords. If we consider the authors as nodes and
the keywords as edges, we can represent the bibliog-
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Figure 1: Network model of researchers.

raphy information as researcher networks.

Let us explain our model using an example. As-
sume that we have two papers, as shown on the left
side of Figure 1. One was written by two authors, A
and B, and has two keywords, W1 and W2. Another
was written by three authors, A, C and D, and has
the keyword W3. We can compose graphs of the au-
thors and edges from the two papers, as shown in the
center of Figure 1. Then, the joint representation gen-
erated from the two bibliographies of the two papers
is shown on the right side of Figure 1.

As one can see, we can obtain a labeled graph from
the bibliography data with our modeling. Then, the
next question is how do we discover research com-
munities from this graph. We define a research com-
munity as a cluster which is densely connected by
the same research interest or topic. Therefore, the
research communities we want to obtain are clusters
which have their edges labeled by the same keywords.
Since our network model provides the research key-
words on the edges, we can obtain the research com-
munities by eliminating the edges of no interest to the
system user. In other words, after the user specifies
the research keywords, most of the edges which are
not labeled by the specified keywords can be deleted.
This process produces the research communities. For
example, when the user specifies W3 for the networks
in Figure 1, the edges of W1 and W2 are eliminated.
As a result, researcher B is isolated from the graph
and we can find the research community consisting
of researchers A, C and D.

2.2 Keyword Assignment for Communi-
ties

Since the clusters obtained by our method are only
connected by user-specified relationships, we can
consider each cluster as a research community. How-
ever, each cluster does not have its own property or
identification. In other words, if the user does not
have enough knowledge about the researchers, the
user may not understand the meaning of the commu-
nities because there is no information about them. In
order to solve this problem, we propose a method of
assigning keywords for each obtained community.

In our paper model, the papers written by the au-
thors in each community have keywords. If some
words appear often in such papers, we can consider
these words as a property for the community. How-
ever, if we simply counted the occurrences of the key-
words in these papers, the relationships between key-
words would be lost. In order to avoid this problem,
we consider frequent keywords as units of the papers.
The algorithm is follows:

1. Select papers, which are written by the authors
in the community, from a paper database. Note
that the papers are selected for each user. For
example, if a paper is written by two authors in
the same community, the paper is selected twice.

2. The selected papers are analyzed by the Apriori
algorithm (Agrawal and Srikant, 1994). In this
process, the keywords in a paper are treated as an
item, and the papers are treated as transactions.

As a result, we can obtain word pairs for each com-
munity. We assign those word pairs as the property of
the community.

3 Experiments

3.1 Bibliography Data

In order to evaluate our method, we conducted ex-
periments using actual bibliography data. In the
present study, we used the CiNii database (NII,
2004) to obtain bibliography information. We used
128,000 records, 90,000 records, 358,000 records,
and 519,000 records for the paper, researcher, author
and co-author, respectively. The author entries de-
note the number of authors for each paper. For ex-
ample, the record is 3 when three researchers write
a paper collaboratively. The co-author entries denote
the number of combinations of authors for a paper.
For example, the record is counted as 4C2 = 6 for
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Figure 2: Number of discovered communities.

a paper when the paper is written by four authors. It
was necessary to have keywords for our paper model.
Therefore, we used the words in the title as keywords.

3.2 Experimental Results

The co-author network tends to have large clusters. In
fact, the network constructed by all the bibliography
data consists of a few large clusters and many small
clusters. The number of clusters for all the data is
shown in Table 1.

However, our method can successfully split a large
cluster into readable research communities. We uti-
lized five words to show the discovered communi-
ties. The five words are as follows: genetic algorithm,
logic, agent, learning and discovery. We counted the
number of nodes and clusters for each word. Figure 2
illustrates the result. The horizontal axis denotes the
number of nodes and the vertical axis denotes the
number of communities. As you can see from Fig-
ure 2, our method successfully discovers readable-
sized communities. In addition, communities related
to particular topics of interest to the user can be mined
by our method.

Next, in order to evaluate our method for qualita-
tive aspect, we analyzed the communities obtained
by our method. The communities were constructed
using the word ”Discovery”. Although our method
discovered many communities, we selected five com-
munities shown in Figure 3. Since our bibliography
data mainly included papers written in Japanese, the
communities obtained also consisted of Japanese re-
searchers. The assigned keywords for each commu-
nity are shown in Table 2. The longest pair of key-
words, which frequently appeared in the top three,

Table 2: Keywords obtained for the topic ”discov-
ery”.

Community ID Keywords
{discovery}

No. 1 {algorithm}
{special issue}

{Japanese poem, similarity}
No. 2 {poem, similarity, extraction}

{English sentence, technology}
{heuristics, method}

No. 3 {database, heuristics}
{knowledge, exception, discovery}

{definition, occurrence, lambda calculus}
No. 4 {logic, program}

{unification, extension}
{*th, workshop}

No. 5 {scientific, discovery}
{*th, report}

were selected for the table.
Community No. 2, No. 3, No. 4 and No. 5 rep-

resent research groups in universities. Most of the
assigned words for the communities are valid. How-
ever, our method assigns meaningless words such as
”workshop” and ”report”. In our future work, we
plan to develop a method to suppress the assignment
of meaningless words. We believe such words can
be identified by a simple method of retrieving stop
words. Community No. 1 is the largest community
in Figure 3. Since Prof. Setsuo Arikawa at Kyushu
University is one of the most famous Japanese sci-
entists in the ”discovery” domain, he bridged several
communities. For example, the bottom left part of
the community is the research community at Kyushu
University, and the upper left part of the community
is a community in machine learning. As a result,
our system assigns general words for this community
such as ”discovery” and ”algorithm.” In addition, the
system cannot generate a long pair of words for this
community. In our future work, we will develop a
method to identify a person who is a bridge between
different communities. Incidentally, the word ”spe-
cial issue” was assigned in Community No. 1 be-
cause the community members edit a special issue for
a journal.

4 Conclusion

In this paper, we propose a research community min-
ing method. The key feature of our research is the
modeling of papers and researchers. This modeling
enables us to eliminate the edges in large clusters.
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Table 1: Distribution of clusters for all the bibliography data.
Number of Nodes 76375 39 28 27 26 . . . 10 9 8 7 6 5 4 3 2 1
Number of Clusters 1 1 1 1 1 . . . 31 39 57 64 143 214 328 646 1054 7173

Figure 3: Research communities of discovery in Japan.

In addition, the modeling can also help to retrieve
communities for particular topics. We also propose
a method to assign a word to each cluster. We im-
plemented our method and show how to investigate
bibliography data with our system. The experimen-
tal results show that the performance of our method
looks promising.
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Abstract

The clustering coefficient has been used successfully to summarise important features of unweighted,
undirected networks across a wide range of applications. Recently, a number of authors have extended
this concept to the case of networks with non-negatively weighted edges. After reviewing various
alternatives, we focus on a definition due to Zhang and Horvath that can be traced back to earlier work
of Grindrod. We give a natural and transparent derivation of this clustering coefficient and then analyse
its properties. One attraction of this version is that it deals directly with weighted edges and avoids
the need to discretise, that is, to round weights up to 1 or down to 0. This has the advantages of (a)
retaining all edge weight information, and (b) eliminating the requirement for an arbitrary cutoff level.
Further, the extended definition is much less likely to break down due to a ‘divide-by-zero’. Using our
new derivation and focussing on some special cases allows us to gain insights into the typical behaviour
of this measure. We then illustrate the idea by computing the generalised clustering coefficients, along
with the corresponding weighted degrees, for pairwise correlation gene expression data arising from
microarray experiments. We find that the weighted clustering and degree distributions reveal global
topological differences between normal and tumour networks.

1 Introduction

Many complex data sets have natural representations
as networks. Summarising, comparing, categoris-
ing and modelling these data sets are important ac-
tivities that are taking place simultaneously across a
wide range of disciplines (Newman, 2003). It is ac-
cepted that typical real-life networks are neither ran-
dom graphs in the classical Erdös-Rényi sense nor
regular lattices (Watts and Strogatz, 1998). Various
quantities can be computed in order to characterise
a network; most prominently the concepts of path-
length, degree and clustering coefficient have proved
extremely useful.

Watts and Strogatz (1998) coined the phrase small
world network to describe the commonly occurring
situation where a sparse network is highly clustered
(like a regular lattice) yet has small pathlengths (like
a random graph). Since that landmark paper, many
complex networks have been analysed and labelled
as small worlds.

Similarly, the so-called scale–free property of the
degree distribution, (Barabasi and Albert, 1999; New-
man, 2003), has become accepted as a hallmark of
many real data sets, although there is now some doubt

as to its true prevalence (Khanin and Wit, to appear;
Pržulj et al., 2004).

Both the small world and scale–free properties
have been widely studied for unweighted, or binary,
undirected networks. In the case of more general
weighted edges it is of course possible to create a
binary network by normalising, imposing a cutoff
and rounding to 0 and 1 (Rougemont and Hingamp,
2003). However, it is our tenet that the original
weights should be respected where possible. Re-
cently, a number of authors have attempted to gener-
alise the clustering coefficient concept to the case of
weighted edges (Barrat et al., 2004; Lopez-Fernandez
et al., 2004; Onnela et al., 2005; Zhang and Horvath,
2005), producing a range of possible definitions.

We present here a natural and transparent deriva-
tion of a clustering coefficient for weighted graphs.
The resulting definition coincides with those in
(Grindrod, 2002; Zhang and Horvath, 2005) and
hence we argue for the use of this Grindrod-Zhang-
Horvath clustering coefficient as a generalised mea-
sure of clustering. We believe that this measure,
along with the corresponding weighted degree dis-
tribution, gives an informative high-level picture that
can be used for classifying, comparing and modelling
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weighted networks, just as in the unweighted case.
We do some analysis to provide insight into the use-
fulness of this clustering coefficient, and then show
some results for gene expression microarray data.

Many methods for microarray data analysis moni-
tor differences in the expression of genes under var-
ious experimental conditions: normal/tumour (Chen
et al., 2002), multiclass cancers (Golub et al., 1999;
Ramaswamy et al., 2001), treatment/survival (Segal,
2005). Pair-wise gene expression correlation has long
been used to predict relationships between genes. Re-
cently, gene co-expression networks have emerged
(Stuart et al., 2003; Zhang and Horvath, 2005) con-
necting genes with high correlation. However, de-
spite the fact that genome-wide gene expression data
sets are available, their full potential is often not used
and information from only a subset of genes, usually
with highest variation, is extracted. Hence, we view
these weighted networks as ideal candidates on which
to apply the new clustering coefficient framework.

Using available microarray data we construct two
distinct gene coexpression networks that represent
normal and tumour states. We examine weighted
clustering coefficients and weighted degree distri-
butions of these networks with the aim of finding
tumour-related differences. We emphasize that our
aim is to characterize overall network topology rather
than to categorize individual genes or samples.

The rest of this article is organised as follows. In
section 2 we start with the binary definition of clus-
tering coefficient and list some generalisations that
have been proposed for weighted networks. In sec-
tion 3 we give a natural derivation that leads to the
Grindrod-Zhang-Horvath definition, and show how
this can be easily computed via matrix products. We
then use some simple examples to explore the proper-
ties of this coefficient. In section 4 we give some re-
alistic computations on pairwise correlation networks
arising from microarray data.

2 Clustering Coefficient and its
Generalisations

Consider an undirected graph with normalised
weights 0 ≤ wij ≤ 1 between nodes i and j. In the
binary case wij ∈ {0, 1} the clustering coefficient, or
curvature, for node k is defined as

clust(k) :=
t

v(v − 1)/2
, (1)

where v is the number of immediate neighbours of
node k, and t is the number of triangles incident to

node k (Rougemont and Hingamp, 2003; Watts and
Strogatz, 1998). In words, clust(k) answers the ques-
tion “given two nodes that are both connected to node
k, what is the likelihood that these two nodes are con-
nected to each other?” It is straightforward to see that
the definition breaks down when v < 2, that is, node
k has less than two immediate neighbours, and other-
wise 0 ≤ clust(k) ≤ 1.

Recently, a few different extensions of the clus-
tering coefficient to the general weighted case have
emerged. In Lopez-Fernandez et al. (2004) the
weighted clustering coefficient for node k is defined
as

wclustLF(k) :=

∑

i 6=j∈N(k) wij

v(v − 1)
,

where the term
∑

i 6=j∈N(k) wij can be seen as the to-
tal weight of relationship in the neighbourhood N(k)
of node k.

Barrat et al. (2004) introduced a measure of clus-
tering that combines topological information with the
weight distribution of the network

wclustB(k) :=
1

s(v − 1)

∑

i,j

(wki + wkj)

2
aikakjaij .

Here s =
∑

j wkj denotes the weighted degree of
node k and aij is an element of the underlying bi-
nary adjacency matrix. The normalisation factor
s(v − 1) ensures that 0 ≤ wclustB(k) ≤ 1. This
definition of weighted clustering coefficient consid-
ers only weights of edges adjacent to node k but not
the weights of edges between neighbours of the node
k.

Onnela et al. (2005) took into account weights
of all edges: adjacent to node k and between-
neighbours. They considered weights 0 ≤ wij ≤ 1
and replaced the number of triangles t in (1) with the
sum of triangle intensities

wclustO(k) :=
2

∑

i,j(wikwkjwij)
1/3

v(v − 1)
.

We remark that the three clustering coefficient def-
initions above suffer from the drawback that they re-
quire an underlying binary network to be generated;
if this is not available as a separate set of data, then
presumably it must be obtained by discretizing the
weighted edges. Hence, as in the case where the orig-
inal binary definition is used for weighted networks
(Rougemont and Hingamp, 2003), they are depen-
dent upon some thresholding parameter. Further, they
break down in the case where the number of binary
neighbours, ν, is less than 2.
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A definition that uses only the network weights was
proposed by Zhang and Horvath (2005)

wclustHZ(k) :=

∑

i 6=k

∑

j 6=i,j 6=k wkiwijwjk

(
∑

i 6=k wki)2 −
∑

i 6=k w2
ki

. (2)

The numerator in (2) was obtained by finding a
lower bound for the denominator, this ensuring that
wclustHZ is in the range [0, 1].

We also mention that rather than one clustering co-
efficient per node, Schank and Wagner (2005) pre-
sented a single weighted clustering coefficient for the
whole network as

wclustS :=
1

∑

v w(v)

∑

v

w(v)c(v).

Here c(v) is a clustering coefficient for node v and
w(v) a weight function. One of possible choices of
weight function is the weighted degree.

3 Weighted Clustering

3.1 Definition and Properties

Consider now an undirected weighted network of M

nodes that is fully connected with weights 0 ≤ wij =
wji ≤ 1 between nodes i and j and wii = 0. Some
simple algebra allows the binary clustering coeffi-
cient (1) to be rewritten as

wclust(k) :=

∑M
i=1

∑M
j=1 wkiwkjwij

∑M
i=1

∑M
j=1,j 6=i wkiwkj

. (3)

This formula directly extends to the real value case
where wij ≥ 0 and hence gives a natural definition
for weighted networks. We also mention that the
same formula was used in Grindrod (2002) in the con-
text where wij represents the probability of an edge
between nodes i and j in a random network model.
Closer inspection shows that the formula (3) has a
simple interpretation that is analogous to that of the
binary case:

1

2

M
∑

i=1

M
∑

j=1

wkiwkjwij

is a reasonable measure of how many “big triangles”
involve node k and

1

2

M
∑

i=1

M
∑

j=1j 6=i

wkiwkj

says how many “big pairs of neighbours” there are.
It is easy to verify that (3) retains the property 0 ≤
wclust(k) ≤ 1.

Computationally, note that the numerator of (3) is

1

2

M
∑

i=1

wki

M
∑

j=1

wkjwij = 1

2

M
∑

i=1

wki(W
2)ki

= 1

2
(W 3)kk

and the denominator is

1

2

(

M
∑

i=1

M
∑

j=1

wkiwkj −

M
∑

i=1

w2
ki

)

= 1

2

(

(eT wk)2 − ||wk||
2
2

)

.

Here, (W p)ij denotes the (i, j) element of the pth
power of W , wk denotes the kth row (or column) of
W and e denotes the vector with all elements equal to
one. Hence, a neater representation of (3) is

wclust(k) =
(W 3)kk

(eT wk)2 − ||wk ||
2
2

, (4)

which shows that the weighted clustering coefficient
can be computed across all nodes in O(M 3) opera-
tions. The formula (4) also makes it clear that (3)
is entirely equivalent to the Zhang-Horvath definition
(2).

Having derived this definition from what we be-
lieve to be a natural and informative viewpoint, we
now attempt to gain further insights by focussing on
particular types of weighted network.

3.2 Limit Forms of Clustering
We now zoom to a particular node K of a graph and
explore its weighted clustering coefficient (3) in spe-
cific cases. Starting with a binary network wij ∈
{0, 1} we replace zero weights with a small weight
0 < ε << 1 (weak connections) and unit weights
with 1− ε (strong connections). Thus, we are dealing
with fully connected graph.

(A) In the first case, let node K have m > 1 strong
and n > 1 weak connections to other nodes in the
graph. Then there are (a) m(m− 1)/2 strong-strong,
(b) mn strong-weak and (c) n(n − 1)/2 weak-weak
neighbour pairs. Let there be r, s and u strong edges
between neighbours in cases (a), (b) and (c) respec-
tively. It is easy to show that equation (3), for ε → 0,
results in wclust(K) = 2r/m(m − 1). In words,
r strong triangles are built over m(m − 1)/2 strong
neighbour pairs. Thus the weighted clustering coeffi-
cient (3) approaches the binary value (1).
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Figure 1: Clustering coefficient of the central node in
the weighted graph defined by (5).

(B) In the second case we consider the marginal
setting v = 1: node K has strong connection, 1 − ε,
only to one node P and n weak, ε, connections to
all other nodes in a complete graph. Then n out
of all possible neighbour pairs involve the strong
edge between nodes K and P and n(n − 1)/2 pairs
are formed by n weak edges adjusted to node K.
Between-neighbour edges will be again strong or
weak. Let there be r strong edges with one end in
node P and s strong edges between “weakly” con-
nected neighbour nodes of node K. Then from (3) we
get wclust(K) = (rε(1 − ε)2 + (n − r)ε2(1 − ε) +
sε2(1−ε)+(n(n−1)/2−s)ε3)/(nε(1−ε)+n(n−
1)ε2/2) . This expression results in r/n for ε → 0.
In words, we can get to r out of n “weakly” con-
nected neighbours of the node K through the strong
edge KP and strong edges connecting node P with
these r nodes. It is clear that wclust(k) = 1 only
if r = n, that means there is a strong edge between
P and all nodes weakly connected to K. Because
wclust(k) = 0 if r = 0, the strong edge between
nodes K and P is the only edge involving node P .
That means this edge would be separated from the
graph in the corresponding discretised network.

Case B reveals an important advantage of the gen-
eralised definition (3). It continues to provide use-
ful information in the small ε regime where any dis-
cretization process based on thresholding to a binary
network would result in v = 1 and hence an unde-
fined clustering coefficient in (1).
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Figure 2: Probability of weighted degree (left) and
curvature (right). Breast cancer: normal (circles) and
tumour (stars).
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Figure 3: Probability of weighted degree (left) and
clustering coefficient (right). Liver cancer: normal
(circles) and tumour (stars).

3.3 Uniform Connectivity

Another case where the clustering coefficient simpli-
fies arises when node K has equal weights with all
other nodes: wKj = constant for all j 6= K. In this
case we have

wclust(K) =

∑M
i=1

∑M
j=1 wij

(M − 1)(M − 2)
≈

∑M
i=1

∑M
j=1 wij

M2
,

and we see that wclust(K) then reflects the average
connectivity between the other nodes in the network.
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Figure 4: Probability of weighted degree (left) and
clustering coefficient (right). Lymphoma: normal
(circles) and tumour (stars).

3.4 Range Dependent Weights

The concept of a range-dependent weighted random
graph, or RENGA, was introduced and analyzed
by Grindrod (2002) and further studied by Higham
(2005). We may adapt this idea to the case of non-
random range-dependent weights. Suppose that the
nodes are ordered 1, 2, 3, . . . , M and that the connec-
tivity weight decays as a function of lattice distance.
To be specific, we let

wij = wji = λ|i−j|, (5)

for some λ ∈ [0, 1]. At one extreme, λ ≈ 0, there
are no edges after discretising to a binary network,
and hence the traditional clustering coefficient is un-
defined. At the other extreme, λ = 1, all edges are
present after discretising to a binary network, and
hence the traditional clustering coefficient is 1 for
each node. In Figure 1 we use networks of size
M = 50, 100, 200 and compute the generalised clus-
tering coefficient (3) for the central node, k = 1

2
M ,

as λ ranges from 0 to 1. Note that the definition (3)
makes sense for any λ > 0. We see that the clus-
tering coefficient approaches the value zero as λ ap-
proaches zero from above; this is perfectly reasonable
behaviour. Further as λ increases away from zero, the
clustering coefficient monotonically increases, and it
matches the binary value of 1 at λ = 1. Overall, the
generalised version provides a natural, informative
interpolation of the classical clustering coefficient.
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Figure 5: Probability of weighted degree (left) and
clustering coefficient (right). Threshold 0.8. Lym-
phoma: normal (circles) and tumour (stars).

4 Microarray Illustration
We now examine the distribution of the clustering co-
efficient (3) in practice, along with that of the corre-
sponding weighted degree, using pairwise correlation
networks arising from cDNA microarray data. Most
importantly, we would like to explore differences in
character of weighted degree and clustering coeffi-
cient distributions of two different networks: normal
and tumour.

The initial gene expression data arising from
cDNA microarray experiments is a rectangular M ×
N matrix A of log-transformed ratios aij of i =
1, . . . , M genes in a set of j = 1, . . . , N samples.
We consider the Pearson correlation

cor(i, j) =

∑N
k=1(aik − µi)(ajk − µj)

σiσj
,

where µi and σi are respectively the mean and the
standard deviation of gene i log-ratios, as a measure
of similarity between the gene expression profiles.
We define pairwise gene similarity weights wij =
|cor(i, j)|, for 1 ≤ i, j ≤ M , with wij = wji ∈ [0, 1]
and wii = 0. A large weight wij indicates that genes
i and j are highly co-expressed (or anti-expressed).
In this representation M × M matrix W denotes the
symmetric weight matrix encoding the strength of
connection between pairs of genes.

Aware of the fact that different number of genes
as well as samples in data sets can affect values
of correlation and consequently distort comparisons
of both weighted degrees and clustering coefficients,
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Figure 6: Probability of weighted degree (left) and
clustering coefficient (right). P value 0.05. Lym-
phoma: normal (circles) and tumour (stars).

we looked for data consisting of the same num-
ber of normal and tumour samples for the same set
of genes. In this experiment we used cDNA mi-
croarray data for normal and tumour tissues, taken
from (Choi et al., 2005) and downloaded from
http://centi.kribb.re.kr/MMA/index.html. Data pro-
cessing performed by the authors included filtering of
genes with more than 70% missing values or less than
4 observations, UniGene mapping, and imputation of
missing values. The original data can be downloaded
from the Stanford Microarray Database.

We selected data sets with more than ten samples
in normal and tumour subsets. We present three of
the results in this paper: breast cancer (5603 genes,
13 samples), liver cancer (12065 genes, 76 samples)
lymphoma (4615 genes, 31 samples). Figure 2 shows
the distribution of the weighted clustering coefficient
(right), and also the distribution of the weighted de-
gree (left) arising from breast cancer data. Circle-line
and star-line represent the distributions of normal and
tumour networks respectively. Figure 3 and Figure 4
show results for liver cancer and lymphoma.

We emphasize that our aim is to study the ‘big-
picture’ issue of overall network topology, as opposed
to the ‘fine-detail’ issue of clustering individual genes
and/or samples (Kluger et al., 2003). The figures re-
veal global topological differences between the two
networks. In general the tumour samples give rise
to smaller and more peakily distributed clustering
and degree. Degree ranges of normals and tumours
start from a similar value but the degree range of tu-
mours is narrower. Large numbers of genes in normal

samples show a high degree of connection to other
genes. Differences in clustering coefficient distribu-
tions are more striking. Distribution ranges of normal
and tumour networks only partly overlap: most genes
in normal networks have higher correlation than any
gene in tumour networks.

Given that the weighted clustering coefficient pro-
duces interesting results, it is pertinent to ask whether
careful thresholding to a discretised binary network
(Rougemont and Hingamp, 2003) can also reproduce
these findings. Clearly there is a whole parameter-
ized family of such binary networks. In particular,
high thresholding may exclude interesting features of
the networks. For example, when weights above the
threshold of 0.8 are re-set to 1 and the remaining
weights are re-set to zero, the clustering coefficient
and weighted degree distributions could not reveal the
differences observed from original networks; see Fig-
ure 5.

For a more systematic approach, P values may be
used to decide on significance of correlation. Even
in this case, however, somewhat arbitrary thresholds
must be imposed. For the lymphoma networks, sup-
pose we take the view that correlations ≥ 0.355 are
significant (corresponding to P ≤ 0.05) and correla-
tions ≥ 0.456 are highly significant (corresponding to
P ≤ 0.01). This would mean that only 18% (12%) of
all possible edges are significant and 8% (< 5%) are
highly significant in the normal (tumour) lymphoma
network, so that a large amount of data is being dis-
carded. (Of course, there are computational benefits
from introducing sparsity, but for the network sizes
in these experiments this is not a significant issue.) In
Figure 6 we plot data for the P ≤ 0.05 binary net-
works. Comparing with Figure 4, we see that very
similar topology is revealed. This allows us to con-
clude that the parameter-free weighted clustering co-
efficient approach is not affected by insignificant or
“by chance” values, and automatically produces re-
sults consistent with the P value version.

5 Summary
Our aim here was to argue that out of the possible
ways that have been proposed to generalise the clus-
tering coefficient to the case of a weighted network,
there is one very promising candidate; namely the
Grindrod-Zhang-Horvath version (Grindrod, 2002;
Zhang and Horvath, 2005). We gave a natural deriva-
tion and illustrated its behaviour on specific classes of
network. Particular advantages of the definition are:

• It is a true generalisation, collapsing smoothly to
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the binary case when edge weights tend to {0, 1}
values.

• It can provide meaningful results in cases where
any type of binary thresholding produces break-
down.

• It reveals natural topological properties of real
networks, and can do this without the need to
specify parameters or discard potentially useful
data.
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Abstract

A major challenge of computational biology is the inferenceof genetic regulatory networks and the
identification of their topology from DNA microarray data. Recent results show that scale-free net-
works play an important role in this context. These networksare characterized by a very small number
of highly connected and relevant nodes, and by numerous poorly connected ones. In this paper, we ex-
perimentally assess the predictive power of the scale-freeparadigm in a supervised learning framework.
The hypotheses we intend to test in this framework are: (i) regulatory genes are effective predictors
of the expression of the genes they regulate; (ii) a subset ofregulatory genes may explain most of
the variability of the measures. More precisely, we use the expression levels of a subset of regulatory
genes, returned by feature selection, as input of a learningmachine which has to predict the expression
levels of the target genes. We will show that (i) each gene canbe predicted by a small subset of regu-
latory genes, and (ii) on a global scale, a small subset of regulatory genes, called the hubs, can have a
non-negligible predictive power on all the target genes. Also, most of the regulatory genes returned by
the application of this approach to Gasch et al. (2000) data were identified by Segal et al. (2003) and
form a biologically coherent set of genes.

1 Introduction

The inferenceof genetic regulatory networks from
DNA microarray data is one of the major challenges
in systems biology. A critical issue in network in-
ference is the identification of thenetwork topology
from noisy data. Recent results tend to show that
scale-free networksplay an important role in sys-
tems biology (Jeong et al., 2000; Barabási and Olt-
vai, 2004; Barab́asi et al., 2004), notably for the yeast
Saccharomyces cerevisiaemodel organism (Farkas
et al., 2003; van Noort et al., 2004). These networks
are characterized by a very small number of highly
connected and relevant nodes, called thehubs, and by
numerous poorly connected ones.

In this paper, we experimentally assess the role of
the scale-free paradigm in asupervised learningap-
proach to network inference in the case of theSac-
charomyces cerevisiaeorganism. The idea is that
relevant genes should emerge as goodpredictors in
a multi-input multi-output supervised learning ap-

proach where the inputs are theregulatory genes1 and
the outputs are thetarget genes(Zhou et al., 2004).
In particular, we will show that (i) for each gene, few
other genes have an important predictive power, and
(ii) a few genes (the hubs) have an important predic-
tive power onall the target genes.

The main contributions of the paper are described
hereafter. First, asupervised learning framework
for network inference is introduced in Sect. 2. This
means that the dependency between genes is esti-
mated by the predictive power that theexpression lev-
els of a set of regulator genes have on the expres-
sion levels of some target genes. Also, because of the
large ratio between the number of genes and the num-
ber of experimental conditions, we propose afeature
selectionstrategy based on the Gram-Schmidt (GS)
orthogonalization procedure (Stoppiglia et al., 2003).
This procedure generates anindividual variable rank-

1Transcriptional regulatory genes, also known asregulator
genesor simply regulators, produce transcription factors (TF),
which are regulatory proteins that regulate non-coding DNAseg-
ments (so called TF binding motifs) of target genes and initiate the
transcription process.
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Figure 1: Supervised learning setting.

ing for each target gene. The first genes of each of
these rankings constitute the small subsets of genes to
be used aspredictorsin the supervised learning prob-
lem. According to the scale-free paradigm, only a
small subset of genes plays a crucial role and these
genes are thus expected to be well ranked in all the
individual rankings. In order to assess this hypothe-
sis, anaggregated rankingis built by “averaging” the
individual rankings.

The experimental session relies on the dataset
described in Gasch et al. (2000). The predictive
power of the selected genes is assessed via across-
validationstrategy (Hastie et al., 2001) for a conven-
tional linear model (D’haeseleer et al., 1999).

2 Supervised Learning Frame-
work for Network Inference

Let us represent a DNA microarray dataset by aN×n

matrixE, whereN is the number of samples,n is the
number of genes, andE[Cj , Gi] = exprGi

Cj
denotes

the expression measure of geneGi in mRNA sample
Cj .

Let T be the set of target genesGi, i ∈
{1, . . . , |T |}. Typically, this set is constituted by all
genes, and thus|T | = n. Also, letR be the set of
regulatory genesRGi, i ∈ {1, . . . , |R|}.

The issue of modeling the statistical dependencies
between gene expression levels can be described as
a supervised learning problem (see Fig. 1) character-
ized by the following elements: a data generator (the
input), a target operator (the output), a training set
and a learning machine (Vapnik, 1998).

The goal of a learning machine is to return a hy-
pothesis with lowprediction error, i.e. a hypothesis
which computes an accurate estimate of the output
of the target when the same value is an input to the
target and the predictor. The prediction error is also
usually calledgeneralization errorsince it measures
the capacity of the hypothesis to generalize, that is to
return a good prediction of the output for input values

not contained in the training set.
A typical way of representing the unknown in-

put/output relation is theregression plus noise form2:
y = f(x)+w, wheref(·) is a deterministic function,
also known as theregression function, and the term
w represents the noise or random error. It is typically
assumed thatw is independent ofx andE[w] = 0.

Concerning the expression levels of the genes,
the following dependency is assumed for each gene3

Gi ∈ T :

expr
Gi = fi(exprRG1 , . . . , exprRG|R|) + w .

The goal of the machine learning is to find a model
h(·) which is able to give a good approximation of
the unknown functionf(·) by minimizing an estima-
tion of the mean integrated squared error(MISE),
which measures the generalization error in the case
of a quadratic cost error.

In this paper, we will consider theleave-one-out
(LOO) algorithm to return an estimate of the MISE
prediction error:

M̂ISELOO =
1
N

N
∑

i=1

(yi − h(xi, α
−i
N ))2 ,

whereα−i
N is the set of parameters returned by the

parametric identification performed on the training
set with theith sample set aside.

The parametric identification of the hypothesis is
done according to theempirical risk minimization
(ERM) principle (Vapnik, 1998).

In order to assess more easily the quality of a
M̂ISELOO estimate, we will focus on the LOO esti-
mate of thenormalized mean integrated squared er-
ror (NMISE):

N̂MISELOO =
M̂ISELOO

Var[y]
.

TheN̂MISELOO of a predictor is by definition posi-
tive and the closer it is to zero, the better is the gen-
eralization accuracy of the predictor. Note that the
simplest predictor of the output variable, i.e. the av-
erage:

ŷi =
1
N

N
∑

j=1

yj , i = 1, . . . , N,

has anN̂MISELOO of one. It follows that a value of
N̂MISELOO close to one for a supervised learning pre-
dictor has to be interpreted as a sign of bad accuracy.

2Throughout this paper, boldface denotes random variables.
3If the target geneGi to be predicted is a regulatory gene, then

it will not appear among the inputs.
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3 Feature selection

The supervised learning formulation of the depen-
dency between expression levels leads to a predic-
tion problem where the number of inputs is very
large with respect to the number of samples. Due
to the very high dimensional input space, conven-
tional supervised learning techniques can perform
badly (Guyon and Elisseeff, 2003). A preliminary
feature selection step is then required.

Many feature selection algorithms includevari-
able4 ranking, i.e. ranking variables according to
their individual predictive power, as a principal or
auxiliary selection mechanism because of its simplic-
ity, scalability, and good empirical success (Guyon
and Elisseeff, 2003). Computationally, it is efficient
since it requires only the computation ofe scores,
wheree is the number of input variables, and the sort-
ing of the scores. Statistically, it is robust against
over-fitting because it introduces bias but it may
have considerably less variance (Hastie et al., 2001).
Therefore, although variable ranking is not optimal, it
may be preferable to variable subset selection meth-
ods because of its computational and statistical scala-
bility.

In this paper we adopt the Gram-Schmidt (GS) or-
thogonalization (Stoppiglia et al., 2003) ranking pro-
cedure. Given a set ofe candidate features, there are
2e possible models. Onlye models for selection are
considered in this paper: the model with the feature
ranked first, the model with the first two features, and
so on. The price paid for that complexity reduction is
the fact that there is no guarantee that the best model
is among thee models generated by the procedure.

4 Method

This section presents the algorithmic procedure
adopted to assess the predictive power of a number
of regulator genes on their targets and the effective-
ness of a scale-free aggregation of the most relevant
genes.

First, because of the very high dimensional input
space, a subsetV of the set of regulatory genesR is
selected. For this purpose:

1. We use the GS orthogonalization algorithm to
obtain a ranking of the regulatory genes for each
geneGi of setT . These rankings are called the
individual rankingsIRi.

4The termsvariable and featureare used interchangeably in
this paper. Note, however, that a distinction is sometimes madein
the literature (Guyon and Elisseeff, 2003).

2. We build anaggregate rankingof the regulatory
genes by averaging the positions of each regula-
tory gene in the individual rankings.

3. We build a random rankingRR, where the reg-
ulatory genes are randomly ranked (this is done
for comparison purposes – see Sect. 6).

4. We build the subsetV = {RGv1
, . . . , RGv|V|

}
of predictors (i) by fixing the number|V| of
genes to be considered in the subsetV of pre-
dictors, (ii) by choosing between the individual
rankingsIRi, i ∈ {1, . . . , |T |}, the aggregated
rankingAR and the random rankingRR, and
(iii) by taking the |V| first genes of the chosen
ranking.

Second, the functionhi(·), corresponding to a con-
ventionallinear model (D’haeseleer et al., 1999), is
estimated according to the ERM principle (Vapnik,
1998) for each5 Gi ∈ T , where

êxpr
Gi = hi(exprRGv1 , . . . , expr

RGv
|V| ) .

Then, the generalization capacity of each model is as-
sessed by estimating the generalization error with the
N̂MISELOO. Finally, the average of thêNMISELOO ob-
tained is computed.

For each target gene, we also computed the num-
bers of genes of its individual ranking to be added to
V before theN̂MISELOO starts to increase. In other
words, for each target geneGtg, we start by taking
the first geneG of its individual rankingIRtg, i.e.
V = {G}. Second, if theN̂MISELOO obtained with the
set of genesV ∪ {G′}, whereG′ is the next gene of
IRtg, is smaller than the one obtained with the genes
of V solely, thenG′ is added toV and we continue
by considering the following gene ofIRtg. If this is
not the case, we stop. We thus obtain sets of regula-
tors of varying sizes. Finally, we count the number of
genes “targeted” by each regulator, i.e. the number of
occurrences of each regulator in these sets.

5 Materials

We now study the predictive power of the yeastSac-
charomyces cerevisiaegenes by applying our pro-
cedure on a DNA microarray data set described in
Gasch et al. (2000). We used the list of know and
putativeregulatory genes of the yeastSaccharomyces
cerevisiaeused by Segal et al. (2003).

5If the target geneGi to be predicted is a regulatory gene, then
it will not appear among the inputs.
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Table 1: Averages of thêNMISELOO in the linear case
for different number|V| of regulatory genes for the
individual rankings, the aggregated ranking and the
random ranking.

|V| IR (ind.) AR (agg.) RR (rand.)

1 0.606 0.781 1.003
2 0.550 0.768 0.854
3 0.527 0.758 0.839
4 0.515 0.741 0.829
5 0.508 0.740 0.787
6 0.504 0.732 0.785
7 0.501 0.725 0.779
8 0.499 0.710 0.763
9 0.497 0.710 0.762

10 0.496 0.698 0.713
15 0.494 0.665 0.678
20 0.497 0.662 0.666
25 0.502 0.652 0.645
30 0.510 0.644 0.649

6 Results

6.1 Predictive Power

The averages of the predictivêNMISELOO for differ-
ent number|V| of regulatory genes are presented in
Table 1. The table contains the results for the individ-
ual rankings, the aggregated ranking and the random
ranking (average over 10 realizations). It is worthy
to remark that all the differences between rankings
reported in the table are statistically significant (p-
value=0.01) according to a pairedt-test on the error
vectors and that the results obtained when permuting
the outputs have a poor̂NMISELOO (> 1.4) and are
significantly worse than the non permuted results.

The leave-one-out assessment of the predictive
power shows that a small subset of genes (about 4
to 8) can have a significantly better performance than
the random case and, although inferior, not too far
from the predictive power obtained with individual
rankings. However, the improvement of the aggre-
gated ranking with respect to a random selection van-
ishes for larger number of inputs. This suggests that
the variability of most of the genes can be explained
by a small subset of regulators composed of 4 to 8
genes.

Concerning the individual rankings, the leave-one-
out assessment shows that small subsets of genes
(about 4 to 8) can each have an important predic-

tive power. Moreover, no significant improvements
in terms ofN̂MISELOO occur when bigger subsets are
considered. This suggests that, each gene can be pre-
dicted by a small number of regulatory genes.

Another outcome of the feature selection proce-
dure is the histogram illustrating the distribution of
the number of target genes regulated by a regulatory
gene. As shown in Fig. 2(a), it appears that many reg-
ulatory genes regulate a small percentage (less than
1%) of genes, while few regulatory genes regulate
around 10% of the genome (i.e. about 600 genes).
The log-log plot (Fig. 2(b)) of the histogram sug-
gests an underlying power-law distribution, as con-
firmed by (i) the fitting of a generalized Pareto distri-
bution to the data (Fig. 2(c)) and (ii) the insufficient
evidence to reject the null hypothesis that the under-
lying distribution is a generalized pareto distribution
(p-value=0.49) as returned by the hypothesis testing
method discussed in Goldstein et al. (2004).

6.2 Biological validation of results

This section aims to show that most of the regula-
tory genes well ranked in our method’s aggregated
rankingAR (i) correspond to regulatory genes iden-
tified by Segal et al. (2003) and (ii) form a biologi-
cally coherent set of genes. Moreover, (iii) the pre-
dictive power of the regulatory genes found by Segal
et al. (2003) is comparable to the one of the regula-
tory genes our procedure identified.

In order to compare with our method, letARi be
the set composed of thei first genes of the aggre-
gated rankingAR, let Sall be the set of the 60 regu-
latory genes identified in Segal et al. (2003), and let
Smain be the subset of 22 regulators considered as
the “main” regulators ofSall.

Table 2 shows that 32 to 50% and 60 to 90% of
the regulatory genes identified by setsARi, i ∈
{10, 15, 20, 25, 30}, are also inSmain andSall, re-
spectively. Moreover, these results are highly signif-
icant. Indeed, the correspondingp-values of the hy-
pergeometric distribution are all smaller than1.0 ×
10−4.

The 10 first genes of the aggregated rankingAR
obtained with our procedure are listed in Table 3
(genes in bold belong to setSmain). We noted that
5 of these genes, identified by an asterisk (*), form a
biologically coherent set of genes as they are involved
in starvation, in nutrient limitation or in nutrient con-
trol.

The predictive power of the regulators obtained by
Segal et al. (2003) is similar, in terms of̂NMISELOO,
to the one obtained with our method: averages of
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Figure 2: Number of target genes regulated by a reg-
ulatory gene.

Table 2: Number of regulatory genes of setsARi, i ∈
{10, 15, 20, 25, 30}, that belong toSmain andSall,
respectively.

AR
10

AR
15

AR
20

AR
25

AR
30

Sall 9 11 12 15 18
Smain 5 7 8 8 10

Table 3: The 10 first genes of the aggregated ranking
obtained with our procedure. Genes in bold belong
to Smain. Genes identified by an asterisk (*) are in-
volved in starvation, in nutrient limitation or in nutri-
ent control.

Rank Systematic name Standard name

1 YPL230W* ORF Uncharacterized
2 YJL164C TPK1
3 YGL099W LSG1
4 YDR096W* GIS1
5 YER118C SHO1
6 YLL019C KNS1
7 YGL208W* SIP2
8 YPL203W* TPK2
9 YIL101C* XBP1
10 YJL103C ORF Uncharacterized

the N̂MISELOO by using both lists of main predictors
Smain and of all predictorsSall are 0.688 and 0.620,
respectively. The ranking produced by our method
thus seems to yield better results compared to listSall

and less good results compared toSmain in terms of
N̂MISELOO.

7 Conclusion

In this paper, we experimentally assessed the predic-
tive power of the scale-free paradigm in a supervised
learning framework. The results obtained, although
preliminary, tend to validate this paradigm. Indeed, it
appears that (i) each gene can be predicted by a small
subset of regulatory genes, and (ii) on a global scale,
a small subset of regulatory genes, called the hubs,
can have a non-negligible predictive power on all the
target genes.

Moreover, most of the regulatory genes well
ranked in our procedure correspond to regulatory
genes found by Segal et al. (2003) and form a bio-
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logically coherent set of genes.
Future work will focus on testing other feature

selection algorithms and using other learning algo-
rithms. Another interesting direction consists in gen-
erating in silico DNA microarray data for given net-
works by using existing simulation techniques. The
effect of network topology on the predictive power
that the expression levels of a set of regulator genes
have on the expression levels of some target genes
could then be more accurately assessed by using
different topologies (scale-free, random and small-
world network topologies for example).
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Abstract

We present a model in which a random graph evolves locally by randomly changing edges in the
immediate neighborhood of a node. We find that the emerging graph maintains its small diameter and
obtains a high clustering coefficient as well as a power-law tail in the degree distribution. The scaling
of the diameter and clustering coefficient of the model are also obtained.
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1 Introduction
Many investigations into the properties of real net-
works have shown that they can mostly be charac-
terized by three key properties: a small diameter, a
high clustering coefficient and a power-law tail of the
degree distribution, Albert and Barabási (2002) pro-
vide a comprehensive review. Since Watts and Stro-
gatz (1998) introduced small world networks there
has been an abundance of models with high clustering
coefficients and small diameters as well as models of
preferential attachment generating a power-law tail of
the degree distribution following the introduction of
scale-free networks by Barabási and Albert (1999).

Until the introduction of local edge formation,
however, it had been proved difficult to generate
graphs exhibiting all desired properties simultane-
ously. The vast majority of models proposed using
local edge formation thus far are models of growing
networks, either through adding new links and/or new
nodes, (Davidsen et al., 2002; Jost and Joy, 2002;
Vazquez, 2003; Csányi and Szendrői, 2003; Li and
Chen, 2003; Blanchard and Krüger, 2004; Geng and
Li, 2005). While growing networks might be appro-
priate for some applications, in many cases it would
be more adequate to assume that the number of nodes
and edges remains constant and a mechanism is re-
quired that relies only on re-connecting these edges
and thereby generating realistic properties.

Blanchard et al. (2005) developed a model in

which after an initial phase of a growing network, ex-
isting edges get re-connected without new nodes or
edges being added. Their mechanism requires in each
time period a single node to re-align one of his edges
to another node which has a distance of two, what
they call their ”my friends are your friends” principle.
After sufficient time periods this model shows a high
clustering coefficient, small diameter and a fat-tailed
degree distribution, but no evidence for a power-law
tail as found in many real networks.

In this paper we employ a very similar rule for the
evolution of a graph without adding or subtracting
any nodes or edges. Our focus is on small networks
having only a very limited number of nodes and we
assume that the initial network is random rather than
regular. As in Blanchard et al. (2005) we find evi-
dence for a small diameter and a high clustering co-
efficient whose properties we compare with that of
a random graph and in contrast to Blanchard et al.
(2005) we find strong evidence for a power-law tail
of the degree distribution.

2 The graph evolution
The starting point is a random undirected graph with
N > 2 nodes in which a link exists between any two
nodes with probability of p ∈ (0; 1]. We now let this
graph evolve in discrete time steps using the follow-
ing algorithm in each time step:
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Figure 1: Local evolution of the graph. Suppose
the black node is chosen for updating and intends
to replace this thick dashed link. He will be able to
form a link to any of his neighbor’s neighbor, mar-
ket red. Which link is actually chosen is randomly
determined.

1. Select a node x randomly with equal probability
for all nodes,

2. Select an edge i of this node randomly with
equal probability for all edges,

3. Select randomly with equal probability for all
nodes another node y which has a distance of
2 to the already selected node x,

4. If node x has no common edge with node y, re-
move edge i and replace it with an edge i′ con-
necting nodes x and y,

5. If node x has no edges, there does not exist a
node y which has a distance of 2 to node x or
the selected node y already has a common edge
with node x, no changes to the edges are made.

The number of time periods investigated in the anal-
ysis is denoted by T and we generally investigate
the resulting properties after T = 20N time periods.
This algorithm is illustrated in figure 1.

This algorithm is in essence the same as used by
Blanchard et al. (2005) with one important differ-
ence: their model starts with a simple circle to which
they add links using a similar algorithm as above until
they have obtained the desired number of links in the
model and then from this point onwards let the graph
evolve as described before.

3 The resulting network topology
Using the algorithm described in the previous sec-
tion we conducted a number of simulations using
a variety of parameter constellations, exploring any
combination with N ∈ {50, 100, 150, 200, 250} and
pN ∈ {2, 4, 6, 8, 10}. For each parameter constella-
tion we ran 100 simulations and use the average val-
ues for the diameter and clustering coefficient while
we aggregate all nodes to obtain the degree distri-
bution. Any analysis is conducted after T = 20N
time periods and we do not observe any significant
changes when the number of time periods is extended
further.

3.1 Network diameter
Most real networks have a diameter which is only
slightly larger than that of a random graph. As we can
establish from figure 2 this is also true in our model
for pN ≥ 6, i.e. if the average number of links of a
node is at least 3. For random graphs the average path
length ` scales as

`rand ∼
lnN

ln pN
, (1)

which we also find for our model, whose average path
length is only about 10% higher than that of a random
graph. For smaller values of pN , however, the scaling
is approximately linear in N rather than logarithmic.
A similar result has also been obtained by Blanchard
et al. (2005) who found that an average of at least two
links per node or more was required to obtain a small
diameter.

3.2 Clustering coefficient
Another characteristic of real networks is a clustering
coefficient which is significantly higher than that of
a random graph with the same number of nodes and
edges. For random graphs we know that

Crand = p. (2)

As can be seen from figure 3 the clustering coefficient
in our model is significantly higher, with again the
case of pN = 2 standing out slightly. For pN ≥ 4
we find a different scaling of the clustering coefficient
C as follows:

C = 20.6646pN−0.2880. (3)

We thus observe a high clustering coefficient in our
model which is slowly decreasing in the number of
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Figure 2: Average path length ` of the resulting graph
for different sizes of the network N and probabilities
of two nodes being connected p: pN = 4 (×), 6 (5),
8 (�), 10 (+). Results are based on averaging over
100 runs for each of the 25 parameter constellations
after 20N time steps. The dashed line represents the
results from a random graph.

Figure 3: Clustering coefficient C of the resulting
graph for different sizes of the network N and prob-
abilities of two nodes being connected p: pN = 2
(•), 4 (×), 6 (5), 8 (�), 10 (+). Results are based on
averaging over 100 runs for each of the 25 parameter
constellations after 20N time steps. The dashed line
represents the results from a random graph.

nodes, a property for which there is weak empiri-
cal evidence in the overview collated in Albert and
Barabási (2002), where they mention the clustering
to be nearly constant, although the graph they present
suggests a small negative relationship.

Figure 4: Degree distribution P (k) of the tail from
the resulting graph after 20N time steps for differ-
ent sizes of the network N and probabilities of two
nodes being connected p: pN = 2 (•), 4 (×), 6
(5), 8 (�), 10 (+). The short dashed line repre-
sents the results from a random graph with pN = 10
and the long dashed lines that of a power law dis-
tribution with an exponent of 3 (distribution shifted
upwards for clarity). An exponential cut-off can be
seen at approximately k = 20. The distribution is
obtained from 100 simulations of each of the 25 pa-
rameter constellations using pN = 2, 4, 6, 8, 10 and
N = 50, 100, 150, 200, 250.

3.3 Degree distribution

The degree distribution as illustrated in figure 4
shows clear evidence of a power-law tail with an ex-
ponent of approximately 3. This result is in clear
contrast to the very similar model of Blanchard et al.
(2005) who find evidence for fat tails but no sign of a
power-law for the tail. Given that their algorithm is,
apart from the initial phase, nearly identical to ours,
this result is very surprising and merits further consid-
eration of the relevance of the initial graph for these
results which seems to have a significant influence on
the results.

We observe from figure 4 that, again apart from the
case of pN = 2, the degree distributions scale quite
uniformly with a power-law tail. However, closer in-
spection of the distribution as illustrated in figure 5
shows that we do not observe a perfect power-law tail,
but it rather appears to be the combination of two ex-
ponential tails. We generally observe an exponential
cut-off at approximately k = 20. Given that we did
not investigate larger graphs it has to be seen whether
this observation can be explained with the finite size
of the graph or is a more genuine feature of the al-
gorithm used. Evidence from the graphs investigated
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Figure 5: Degree distribution P (k) from the resulting
graph after 5,000 time steps for N = 250 nodes and
pN = 6. The long dashed lines that of a power law
distribution with an exponent of 3. An exponential
cut-off can be seen at approximately k = 20. The dis-
tribution is obtained from 100 simulations with this
parameter constellation.

here suggests that the finite size effect drives this re-
sult because the distribution moves closer to a power-
law tail as we increase the number of nodes.

3.4 Graph structure
Apart from the properties discussed we see that one
other important element of the resulting graph is that
nodes with a small degree tend to reduce their degrees
even further over time given that they are hardly at-
tracting any new links but loose existing links at the
same rate as any other node. This will inevitably re-
sult in such nodes becoming isolated or forming small
subgraphs which are not connected with the large
component or each other. Figure 6 shows an example
of the initial random graph and the resulting graph af-
ter 2,000 time steps, clearly illustrating this property.
We furthermore observe that the large component is
usually very well connected and does not show clear
evidence of any further distinguishable features, be-
ing quite homogeneous in its structure.

3.5 Explanation of findings
The algorithm used in this model generates a high
clustering coefficient and a power-law tail of the de-
gree distribution while maintaining the small diame-
ter of the initial random graph. This result can eas-
ily be explained from the way new edges are formed.
Any node with a large number of neighbors is also
likely to have a large number of nodes with a distance

Figure 6: Single realization of an initial random graph
with N = 100 and Np = 2 (top panel) and the
evolved graph after T = 2000 time steps (bottom
panel). It has to be noted that with a larger number
of edges the results are qualitatively the same, but the
large number of edges makes any representation very
difficult to visualize.

of two, i.e. neighbor’s neighbors, and thus is quite
likely to be chosen as the destination of an edge by a
randomly selected node. In contrast, a node with only
few neighbors will also only have a small number of
neighbor’s neighbors and the probability of him being
chosen as the destination of a link is relatively small,
causing the number of edges connected to this node
to fall and in some instances leading to a node becom-
ing isolated. Thus nodes with a high degree tend to
attract more links than those with a low degree, giving
rise to a similar effect as the preferential attachment
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of nodes in the Barabási and Albert (1999) model of
scale-free graphs which exhibits a power-law tail of
the degree distribution, also with an exponent of 3.

The high clustering coefficient emerges as the con-
sequence of the local evolution of the graph where
edges are established to a neighbor’s neighbor, thus
increasing the number of triangles in the graph and
thereby increasing the clustering coefficient. The
clustering coefficient will only be limited by the num-
ber of links available in the graph. The random nature
of any connections is maintained, however, thus re-
taining the small diameter of the graph.

4 Discussion and conclusions
The model presented in this paper allows a graph to
evolve randomly in its immediate neighborhood. The
resulting graphs had properties that were largely con-
sistent with those of real networks, namely the small
diameter, high clustering coefficient and power-law
tail of the degree distribution. The algorithm for the
evolution of the graph needs to be adjusted, however,
to avoid the appearance of a large number of isolated
nodes or small components which are not realistic.

Nevertheless, the algorithm can be described as
realistic for many social networks where new con-
tacts are often made through existing contacts, the
”friend’s friend” or ”neighbor’s neighbor” principle,
but it remains unclear at this stage how much the ini-
tial network structure affects the graph topology, es-
pecially in light of the results obtained by Blanchard
et al. (2005) for the degree distribution. Future re-
search needs to clarify the importance of the initial
conditions for the results obtained here, in particu-
lar evaluating whether similar results can be obtained
when starting with a regular graph.

It is furthermore of interest to evaluate the sensi-
tivity of the way new links are determined by consid-
ering a wider range of rules, e.g. preferential attach-
ment, as well as to include some random attachment
outside the neighborhood to prevent nodes from be-
coming isolated as in our model.
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Réka Albert and Albert-László Barabási. Statistical
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Abstract

Recent studies have shown that small genetic regulatory networks (GRNs) can be evolved in silico
displaying certain dynamics in the underlying mathematical model. It is expected that evolutionary
approaches can help to gain a better understanding of biological design principles and assist in the
engineering of genetic networks. To take the stochastic nature of GRNs into account, our evolutionary
approach models GRNs as biochemical reaction networks based on simple enzyme kinetics and simu-
lates them by using Gillespie’s stochastic simulation algorithm (SSA). We have already demonstrated
the relevance of considering intrinsic stochasticity by evolving GRNs that show oscillatory dynamics
in the SSA but not in the ODE regime. Here, we present and discuss first results in the evolution of
GRNs performing as stochastic switches.

1 Introduction

Genetic regulatory networks (GRNs) are complex
systems composed of molecular species including
genes, RNAs, transcriptional factors and other pro-
teins, that chemically interact by specific reactions,
thereby controlling the expression levels of the genes.
GRNs are the fundamental units governing cell ac-
tivities. Understanding them is essential to gaining
understanding of a cell’s development, organization,
function and, ultimately, control. Revealing the de-
sign principles of GRNs is an important step towards
this goal.

Studies suggest that GRNs have a modular struc-
ture, that is, they are composed of small constituent
subnetworks or “modules” representing basic build-
ing blocks (Hartwell et al., 1999). Breaking down a
GRN into its modules and analysing their individual
structure and dynamics as well as their interactions
(reverse engineering) can facilitate the identification
of the GRN’s overall functionality. The inverse ap-
proach, synthesis of GRNs instead of decomposition,
is an alternative way to acquire new insights. By try-
ing to build GRNs showing specific behaviours we
may recognize certain design principles. Engineering
(synthetic) genetic circuits either by hand (Elowitz
and Leibler, 2000; Gardner et al., 2000; Becskei et al.,
2001; Kobayashi et al., 2004) or by using directed
evolution in vivo (Yokobayashi et al., 2002) is both
time-consuming and expensive. Alternatively, evo-

lutionary approaches in silico have been applied to
find genetic networks performing as bistable switches
or oscillators in the underlying mathematical model
(François and Hakim, 2004; Leier et al., 2006). Nat-
urally, in terms of the in vivo performance, the re-
sulting networks are only as accurate as the for-
malisms describing them. Thus, since the mathemat-
ical models are only simplifications of the biologi-
cal processes, the evolved GRNs may not perform in
vivo as they do in silico. Nevertheless, as first results
show, it can still be insightful to study the structure
and characteristics of the resulting networks, taking
the mathematical model into account (François and
Hakim, 2004; Leier et al., 2006).

The molecular character of GRNs makes them in-
trinsically stochastic and noisy (McAdams and Arkin,
1997; Arkin et al., 1998; Elowitz et al., 2002; Hasty
and Collins, 2002). The uncertainty of knowing when
a reaction occurs and which reaction it might be
causes fluctuations that become increasingly notice-
able with smaller numbers of interacting molecules.
Although noise can adversely affect cell function, it
is also considered a source of robustness and stabil-
ity, signal amplification, and selection of signalling
pathways. Intrinsic stochasticity can be modelled by
using the stochastic simulation algorithm (SSA), in-
troduced by Gillespie (1977, 2001). The SSA is a
statistically exact simulation method assuming that
the system is homogeneous and populations are well-
mixed within a constant volume.
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In Leier et al. (2006) we present a genetic program-
ming (GP) approach for evolving biochemical reac-
tion networks based on simple enzyme kinetics that
demonstrate desired dynamics when simulated with
the SSA. It is inspired by the work of François and
Hakim (2004) that use a similar approach to evolve
genetic networks that are modelled by ordinary dif-
ferential equations (ODEs). However, the dynamic
behaviour of biochemical systems in the ODE regime
(deterministic, continuous) and the SSA regime (dis-
crete, stochastic) can be very different (Elowitz and
Leibler, 2000; Heuett and Qian, 2005). Therefore,
it is important to see how certain dynamic behaviour
can evolve in the presence of noise. Since one ne-
glects the stochastic nature of molecular interactions
when modelling GRNs with ODEs, stochastic simu-
lation can give deeper insights into chemical dynam-
ics when there are only small numbers of molecules
in the system.

We used our GP system to evolve GRNs with noisy
oscillatory dynamics (Leier et al., 2006). Evolution-
ary runs breed GRNs that clearly oscillate in the
discrete, stochastic regime but not when modelled
as ODEs. The outcomes also confirm results from
François and Hakim (2004) stating the importance of
post-translational modifications for the functioning of
the networks.

Switching, in particular bistable switching, is an-
other fundamental dynamics that can be observed
in many biological systems. Genetic switches are
known to be responsible for controlling developmen-
tal processes and responding to environmental and
intercellular signals. Biological switches and their
underlying mechanisms can be quite different (Wolf
and Arkin, 2003): a switch can be mono-stable, also
called memory-less (the system moves back into its
single stable state once the switching stimulus ends)
or multistable (the system switches between two or
more stable states by a transient application of a stim-
ulus). Switching can occur randomly or by induction.
Mechanisms, identified to allow bistable switching
include cross-repressive feedback loops with coop-
erativity ((Gardner et al., 2000) utilized this mech-
anism to synthesize a toggle switch in E. coli) and
positive feedback with cooperativity (based on this
mechanism (Becskei et al., 2001) construct a bistable
switch in S. cerevisiae).

This work presents first results in the evolution of
genetic switches under intrinsic noise using the GP
approach. For a successful evolution identification of
switching behaviour in GRNs is a crucial factor. Al-
though switching is often associated with a stimulus
or induction signal, we first evolved GRNs that show

periodic, not externally stimulated switching behav-
iour. However, we also analysed the resulting net-
works in terms of induced switching by injection of
certain key molecules. Since noise can bounce trajec-
tories between quasi-equilibrium states SSA dynam-
ics of switches can be very different from ODE dy-
namics when there are only small numbers of mole-
cules involved. Therefore, we also compared the
SSA trajectories with the solutions of the correspond-
ing ODE models and tested the ODE models for in-
duced switching. Here, we focus on GRNs that show
switching behaviour in the SSA but not in the ODE
regime.

2 Methods
In the following material we briefly describe the re-
action model, the stochastic simulation algorithm and
the genetic programming approach. For additional in-
formation on the reaction model and the GP system
we refer to Leier et al. (2006).

2.1 Reaction Model
Our reaction model describes GRNs as a set of
species (genes, mRNAs, proteins and complexes such
as gene-protein bindings or protein complexes) and
master reactions governing their interactions. Master
reactions are small sets of elementary and irreversible
chemical reactions that correspond to biologically
meaningful processes. Each elementary reaction ei-
ther is a first order reaction, a second order reaction
or a homodimer formation determined by the reac-
tion rate constant. The seven master reactions are:
gene transcription and translation (including basal
transcription), transcriptional regulation of genes pro-
vided with two regulatory binding sites operating in a
mode of cooperativity (based on the model described
in Goutsias (2005)), protein modification, dimeriza-
tion and three types of degradation (partial, catalytic
and partial catalytic). Master reactions and their as-
sociated elementary reactions are listed in Table 2.1.

2.2 Stochastic Simulation Algorithm
Two issues led to Gillespie Gillespie (1977) introduc-
ing the SSA that exactly simulates the evolution of
a discrete, stochastic chemical kinetic process in a
well stirred mixture: (1) certain key molecules may
be produced in quite low numbers (models based on
continuous concentrations miss out on the discrete
nature) and (2) the system is intrinsically noisy due to
the uncertainty of knowing when a reaction and what
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Master Reactions
Basal transcription and translation:

a → a + amRNA

amRNA → amRNA + A
amRNA → ∅

A → ∅
Transcriptional regulation:
a + T → aT

aT → a + T
aT → aT + amRNA

aT + R → aTR
aTR → aT + R

Dimerization:
A + B → A:B

A:B → A + B
Partial degradation:

A:B → A
Catalytic degradation:

A + B → A
Partial catalytic degradation:

A:B + C → A

Table 1: The set of master reactions that are the build-
ing blocks of the genetic networks. Each gene has
two regulatory binding sites (R1 and R2) that work
in a cooperative manner: binding of a transcription
factor at R2 requires R1 to be occupied by another
factor. Lowercase letters (a,b, etc.) represent genes
with unbound regulatory sites. When a transcription
factor T is bound at R1 of a the binding is denoted
aT . The regulatory effect (positive or negative reg-
ulation) depends on the corresponding reaction rate
constant. Binding at R2 excludes any transcriptional
activity and hence, represses transcription. The case
of a repressor R bound to aT is denoted as aTR.
mRNA is indicated such as in amRNA. Capitalized let-
ters (A,B, etc.) represent the proteins translated from
the associated mRNA. Protein complexes are repre-
sented using colons (i.e. a protein complex composed
of proteins A and B is represented by A:B). Each re-
action is specified by a reaction rate constant.

reaction takes place (deterministic models ignore sto-
chasticity). Hence, in this context, the use of contin-
uous differential equations methods is debatable.

In the following material we briefly describe the
SSA. It is assumed that the biochemical system is
well-mixed within a constant volume held at con-
stant temperature. Let there be N molecular species
{S1, . . . , SN} that chemically interact through M re-
actions {R1, . . . , RM}. The system state at time t is
described by a vector X(t) ≡ (X1(t), . . . , XN (t))T

where Xi(t) is the number of molecules of species i
at time t. Each reaction Rj can be uniquely defined
by its propensity function aj , where aj(X(t))dt is the
probability that reaction Rj will occur somewhere in
the system within the time interval (t, t + dt), and
its assigned stoichiometric vector νj that specifies the
update of the system state when reaction Rj occurred.
This is defined by νji for i = 1, . . . ,M , which is the
change in the number of Si molecules produced by
one Rj reaction. Our SSA implementation simulates
the time evolution of a system according to the direct
method Gillespie (2001): two independent samples
r1 and r2 of the uniform random variable U(0, 1) are
drawn consecutively. The length of the time interval
[t, t + τ) is given by

τ =
1

a0(X(t))
ln(

1
r1

) ,

where

a0(X(t)) =
M∑

j=1

aj(X(t))

is the sum of all propensities. The specific reaction
Rj occurring in [t, t + τ) is determined by the index
j satisfying

j−1∑
j′=1

aj′(X(t)) < r2a0(X(t)) ≤
j∑

j′=1

aj′(X(t)) .

The state vector is then updated as

X(t + τ) = X(t) + νj .

For the elementary reactions (first and second order
reactions and homodimer formations) used in our re-
action model, the corresponding propensity functions
are shown in Table 2.2.

Since the SSA can become very computationally
intensive when time steps become very small (due
to large numbers of reactions, large reaction rates or
large numbers of molecules), we limit our model to
small numbers of species.
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Reaction Propensity Function
First order reaction
Sk

cj→ Sl aj = cj ∗Xk

Second order reaction
Sk + Sl

cj→ Sm aj = cj ∗Xk ∗Xl

with Sk 6= Sl

Homodimer formation
Sk + Sk

cj→ Sl aj = cj ∗Xk ∗ Xk−1
2

Table 2: Propensity functions for three elementary
types of reactions. cj is the reaction rate constant of
the respective reaction.

2.3 Genetic Programming System
Individuals in the GP population are GRNs according
to the reaction model. Each individual is assigned a
fitness value describing how well its dynamics meets
the prescribed requirements. This value is calculated
by simulating the reaction system using the SSA over
a predefined time and analysing the resulting trajec-
tory. For our purposes, we define constraints the tra-
jectory must satisfy in order not to be penalized. A
penalty is equal to the amount by which the solution
exceeds the constraint. Penalties are weighted ac-
cording to how the constraints are met. Then, penal-
ties are summed up to obtain the fitness value. That
is, the lower the fitness the better the individual. To
guide the evolution towards GRNs with a switching
behaviour in the concentration of a particular pro-
tein (e. g. protein A), we define the following con-
straints (numerical values in parentheses exemplify
the thresholds): (i) the molecular number n of the
species has to be at “low level” (n < 20) for a min-
imum time period T1 (T1 = 500), (ii) the molecu-
lar number n of the species has to be at “high level”
(150 < n < 200) for a minimum time period T2

(T2 = 500), (iii) the time period for a switch between
low and high level (and vice versa) is limited by T3

(T3 = 50). There has to be at least one switch be-
tween “low” and “high” concentration levels in the
trajectory of the corresponding protein, otherwise the
individual’s fitness is set to a maximum value.

Evolution is driven by repeated selection and mu-
tation. The selection method is a simple (50+50) evo-
lutionary strategy, that is, 50 individuals produce one
offspring each and the best 50 out of 100 individuals
build the new population. Offspring are produced by
mutation of the parent individuals. The mutation op-
erators involve random modifications of the reaction
rate constants and additions and deletions of master
reactions. That is, not only rate constants are evolved

but also the structure of the GRN. To focus on small
regulatory networks we fixed the number of genes at
two. This reduced the search space and facilitated
evolution. When reactions are added to the GRN the
reaction rates are uniformly drawn from [0, 1]. A re-
action rate is mutated by multiplication with a ran-
dom number from [0, 2]. At the beginning of an evo-
lutionary run, the initial concentrations are randomly
chosen from 1, 2, . . . , 10 and remain fixed for the en-
tire evolution. Evolution is terminated if the number
of generations without fitness improvement exceeds
a threshold (100 generations). The evolved networks
are simulated several times to verify their dynamic
behaviour.

3 Results
We already mentioned in the introduction that ODE
and SSA models of the same GRN can display very
different dynamics. Figure 3 illustrates this for a
bistable switch evolved in the ODE regime (François
and Hakim, 2004) (Figure 3A). While the ODE
model allows induced switching between two equi-
librium states the SSA trajectories are very noisy with
many irregular switches. However, protein A and B
seem to be in opposite levels, that is, whenever A ex-
ists in higher numbers, B does not and vice versa.
We note that François and Hakim (2004) also present
the GRN with different reaction rates that works as
a bistable switch in both regimes where the species
in the high concentration level have several hundred
molecules. For the rest of this section, we present and
discuss evolved GRNs.

The resulting GRNs can be quite different in their
dynamics and their structure, i. e. in the composi-
tion of the master reactions. Interestingly, although
our fitness function is not geared to the evolution of
bistable switches, a few GRNs show some sort of
bistable switching behaviour, usually with different
high level concentrations of protein A (as predefined)
and B. Figure 2(a) shows such an evolved GRN
where the periodic switching between the two states,
either protein A in high and protein B in low num-
bers or vice versa, is driven by noise (Figure 2(b)).
In this GRN, protein A is the transcription factor of
gene b. It may bind to the gene’s binding sites R′

1

and R′
2. Binding of A at R′

1 activates enhanced tran-
scription of b, additional binding of A at R′

2 represses
transcription. In this example the regulatory region of
gene a is unused. As expected, the dynamic behav-
iour of the GRN in the ODE regime is quite differ-
ent (cf. Figure 2(c)) from the SSA regime. The cor-
responding ODE model shows a single switch when
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Figure 1: Dynamics of an evolved switch in the ODE
regime by François and Hakim (2004). (a) ODE dy-
namics: the switching is induced by two pulses. At
t = 2000 and t = 4000 we add protein concen-
trations [A] = 15 and [B] = 9, respectively. (b)
SSA dynamics (without additional pulses): we ob-
serve very irregular, noisy behaviour. If one protein
is expressed in high numbers the other is not and vice
versa. Switching occurs irregularly without prior ini-
tiation. For SSA and ODE, the initial conditions are
the same ([A] = 10, [B] = 5, [A : B] = 0).

starting with low concentrations [A] and [B] and re-
mains stable at certain concentration levels over the
monitored time whereas the SSA trajectories display
periodical switches. When the state of the ODE so-
lution is perturbed by injecting protein B the system
immediately develops back into the stable state. Only
for very large amounts of added protein concentra-
tions (several hundreds or even thousends depend-
ing on the systems state at the time of injection), we
can observe a short time period where protein B is
present in a higher concentration than protein A, sim-
ilar to the early dynamics shown in Figure 2(c). Thus,
the GRN displays no bistable switching in the ODE
regime. One-time injection of a sufficient number of
protein A molecules during stochastic simulation let
the system switch from low protein A level to high
protein A level. However, injections of protein B did
not necessarily lead to a switch back, irrespective of
the number of molecules added to the system.

Figure 3(a) shows an evolved GRN that behaves
in the stochastic simulation as a monostable switch
with protein A at high level (about 150–250 mole-
cules) and protein B at low level (0 molecules) as the
only truely stable state. By injecting protein B mole-
cules the state switches immediately into a state with
very low numbers of molecules (< 10) for both A and
B. Interestingly, the time the system remains in this
state depends on the amount of protein B molecules
added to stimulate the switch. Figure 3(b) and 3(c)
demonstrate this for injections of 20 and 40 mole-
cules, respectively. In this case the time is roughly
twice as long for the second than for the first trajec-
tory. From several simulations we got the impres-
sion that the larger the injection the longer the system
stays in its state. However, this can only serve as a
rule of thumb as large variations were observed as
well.

4 Discussions
In this contribution we present two GRNs that
our evolutionary approach produced. The resulting
GRNs vary highly in their dynamics and not every
solution exhibits a switching behaviour. According
to the fitness function we search for GRNs where at
least one protein dynamics displays a periodic but un-
triggered switching between a low and a high level
(in terms of molecular numbers). The GRN in Fig-
ure 2(a) shows this form of switching behaviour for
both proteins, that is, their molecular numbers mutu-
ally alternate between high and low levels. This does
not occur because of any injection process or exter-
nal control but because of the inherent noise which
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Figure 2: (a) Schematic representation of an evolved
GRN. The evolved reaction constants are: c1 =
0.445, c2 = 0.110, c3 = 0.136, c4 = 0.003, c5 =
1.6, c6 = 3.867, c7 = 0.122, c8 = 0.516, c9 =
1.021, c10 = 0, c11 = 2.086, c12 = 0.013, c13 =
0.092, c14 = 0.92, c15 = 0.089 and c16 = 0.446.
(b) Simulation results showing the concentration dy-
namics of protein A and B. The (non-triggered) pe-
riodic switching behaviour is evident. (c) Solution of
the corresponding ODEs with initial concentrations
[A] = [B] = 5 and [AB] = 0. After injecting a
strong concentration of protein B at time t = 4000
([B] = 800) the system quickly evolves towards its
previous stable state.
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Figure 3: (a) Schematic representation of an evolved
GRN performing as a stochastic monostable switch.
It differs from the GRN in Figure 2(a) in the post-
translational modifications and in the reaction rate
constants (c1 = 0.939, c2 = 0.208, c3 = 0.155, c4 =
0.008, c5 = 0.047, c6 = 0.022, c7 = 0.312, c8 =
0.044, c9 = 0.852, c10 = 0.169, c11 = 0.251, c12 =
0.523, c13 = 0.013, c14 = 0.783, c15 = 0.222, c16 =
0.063, c17 = 0.494, c18 = 1.364, c19 = 0.121, c20 =
1.363). (b) System dynamics when injecting 20 pro-
tein A molecules at time t1 = 1000 and t2 = 2000.
Initial concentrations are: [A] = 50, [B] = 0 (c) This
time, 40 protein A molecules are added to the system
at t1 and t2. The system remains roughly twice as
long in the state with [A] at low level.
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drives the dynamics backwards and forwards. Indeed,
the corresponding ODE solution has only one equilib-
rium state and after transient stimulation the system
develops back into this state.

The monostable GRN in Figure 3(a) shows inter-
esting properties as well. Here, switches from high
level (stable state) to low level (instable) molecule
numbers of protein A do not occur randomly. Instead,
they have to be induced by protein B injection. The
switch back into the stable state is driven by noise,
though. Apparently, the time period for which the
system is not in its equilibrium depends on the injec-
tion.

Experiments with other monostable GRNs showed
that often injections need to exceed a certain thresh-
old to become effective. This threshold can depend
on the molecular numbers of key proteins in the sys-
tem. Also, the same dosage of injection can be more
efficient, in that it keeps the monostable switch for a
longer time in the nonstable state if it is spread over
a certain time period. This might be interesting from
an experimental perspective and needs to be analysed
in more detail.

So far, we did not evolve real bistable switches.
This is mainly because of the fitness function which
does not put selection pressure on the evolution of
such switches. Nevertheless, evolutionary runs with
modified fitness functions suggest that it is difficult
to find switches which are bistable but work with key
molecules in low numbers. When dealing with low
numbers of molecules there is a natural fluctuation
due to stochasticity and the lower the numbers the
larger the possibility of accidental switching (cf. Fig-
ure 3).

Whether the evolved GRNs in Figure 2(a) and 3(a)
have a structure that occurs in nature remains to be
seen. A comparison of this and other evolved solu-
tions with known biological switches might lead to
further insights.

This work underpins the necessity of stochas-
tic simulation by evolving GRNs that perform as
switches in the SSA regime (but not necessarily in the
ODE regime) and might contribute to the finding of
functional design principles and a better understand-
ing of regulation in cells.
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Abstract

Here we present a novel approach to the study of networks and their resilience properties. Our work
is based on a fundamental relation from dynamical systems theory which states that the macroscopic
resilience of a steady state is correlated with the uncertainty in the underlying microscopic processes,
a property which can be measured by entropy. Here we apply these ideas to the analysis of biologi-
cal networks as obtained from large-scale protein interaction screens in yeast andC. elegans. In this
context we characterize the diversity of possible pathways in terms of network entropy. Our analysis
shows that knockouts of proteins with large contribution to network entropy are preferentially lethal.
This observation is robust with respect to several possible errors and biases in the experimental data.
Our analytical approach goes beyond the phenomenological studies based on local network observ-
ables, such as connectivity. It provides a rationale to study proxies of cellular resilience and to rank
network elements (proteins) according to their importance within the global network context.

1 Introduction

Recent experimental efforts have highlighted the per-
vasiveness of molecular networks in biological sci-
ences (Alm and Arkin, 2003). While a large num-
ber of molecular interactions and associations have
been mapped qualitatively, we have yet to understand
the relation between the structure and the function
of biological networks which control the information
flow and regulation of cellular signals. One particu-
larly important functional characterisation is the re-
silience of an organism against external and internal
changes (Stelling et al., 2004; Kitano, 2004), which,
at the molecular level, amounts to perturbations in the
network parameters. In recent experiments this re-
silience has been studied in direct response to gene
deletions or RNA interference (Giaever et al., 2002;
Kamath et al., 2003). It has been demonstrated that a
large number of such network perturbations do not re-
sult in any phenotypic variation under a given exper-
imental condition. This observation has led to a sim-
ple classification into ’viable’ and ’lethal’ proteins,
according to whether the organism survives the re-
moval of this component or not. In the following we
also refer to the latter as “essential” proteins.

If network topology gives rise to behavioral com-
plexity, one may ask if there is any topological cor-
relate for lethality. In this work we present a natu-
ral framework to derive macroscopic parameters that
characterise the topological and structural resilience
of a network against random perturbations. Our an-
alytical framework goes beyond the seminal studies
of Albert et al. (2000) and Jeong et al. (2001), which
addressed the same problem in terms of phenomeno-
logical parameters such as degree. The key idea and
underlying assumption of our work is that many bi-
ological systems operate at steady state, where char-
acteristic macroscopic observables (the ”phenotype”)
remain constant for relatively long times. This, how-
ever, does not imply that the underlying microscopic
variables (such as protein activities and concentra-
tions) are static, but rather that their complex and
continuous interplay results in a stable phenotype
which can be experimentally observed. Indeed, it
is the diversity and uncertainty of microscopic pro-
cesses which determines the resilience of macro-
scopic steady states against random perturbations. In
the context of dynamical systems this uncertainty is
quantified by the dynamical entropy. The relationship
between entropy and the robustness of macroscopic
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observables (their rate of return to steady state values)
is the content of a fluctuation theorem (Demetrius
et al., 2004), which states that changes in entropy
are positively correlated with changes in robustness.
As a great simplification, and in recognition of our
ignorance about the actual molecular processes, we
assume that the microscopic processes on the net-
work are Markovian. This leads to the notion of
network entropyas a global measure of pathway di-
versity and as a correlate of cellular resilience. In
this paper we will demonstrate that this global de-
scription leads to a natural ranking of network el-
ements (proteins) according to their contribution to
network entropy. In terms of functional perturbation
experiments, we will test the hypothesis that proteins
with higher entropic contribution to the cellular net-
work more frequently have a lethal phenotype when
they are impaired (knock-out/knock-down). Previ-
ously this question has been addressed in terms of
various notions of network centrality: degree Jeong
et al. (2001), shortest path length Yu et al. (2004) and
more recently betweenness Hahn and Kern (2005).
Here we also provide a rationale for why these ad-
hoc measures are sometimes convenient proxies for
network resilience and how they could be extended.

2 Network Entropy and Entropic
Ranking

First recall the definition of the dynamical entropy
for a Markov process,P = (pij), which is given by
(Billingsley, 1965)

H = −
∑
ij

πipij log pij . (1)

Herepij denotes the transition probabilities and the
πi are the components of the stationary distribution.
There are many other ways to investigate complex
dynamical systems through microscopic modelling,
such as differential equations, but our simple stochas-
tic description of dynamical uncertainty is based on
random walks on the network and has a long tradi-
tion in the analysis of diffusive systems Berg (1993).

In our context the dynamical entropy of a Markov
process characterizes the diversity of possible path-
ways and is related (through the fluctuation theorem)
to the systems response to perturbations. If only the
network topology is known, we associate the follow-
ing process with a given adjacency matrixA = (aij):

pij =
aijvj

λvi
. (2)

It has been shown (Arnold et al., 1994) that this pro-
cess is the unique solution to a variational principle
for the leading eigenvalue,λ, of the adjacency matrix.
For irreducible matrices the components of the corre-
sponding leading eigenvector,vi, are all strictly posi-
tive. For Boolean matrices the process matrix of Eq.2
maximizes the entropy and provides the most parsi-
monious choice ofpij . See (Demetrius and Manke,
2004) for a more detailed discussion.

In the following we utilize the decomposition of
network entropy into contributions from all individ-
ual proteins

H =
∑

i

πiHi , (3)

whereHi is the Shannon entropy associated with
proteini. This decomposition suggests that network
elements with a higher contribution to the overall en-
tropy have a larger effect on the network’s resilience
and functionality when removed.

3 Biological Networks and Func-
tional Studies

Here we analyse biological networks of protein-
protein interactions for a single-cellular organ-
ism (budding yeast) and the multi-cellular worm
(C.elegans) which we retrieved from public databases
(Mewes et al., 2002; Chen et al., 2005). For both
organisms this information is supplemented by func-
tional studies of large-scale gene disruption experi-
ments (Giaever et al., 2002; Kamath et al., 2003).

For S.cerevisiaewe retrieved a bidirected inter-
action network of 3854 proteins with 11912 yeast-
two hybrid interactions and 1170 essential proteins
among the total set of 6203 proteins. The protein-
protein interaction network ofC.elegansconsists of
2800 proteins and 8740 interactions. Of all the pro-
teins with a recorded interaction 322 are classified as
essential, because their inhibition resulted in a lethal
phenotype. It should be noted that both interaction
data and functional screens have a number of associ-
ated errors, resulting from experimental insufficien-
cies of large-scale studies and their limitation to cer-
tain environmental conditions.

4 Proteins with high entropic
contribtion tend to be essential

The network data described in the previous section
lends itself to a structural analysis, which has conven-
tionally been done in terms of various connectivity
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measures Jeong et al. (2001); Yu et al. (2004); Hahn
and Kern (2005). Here we utilize network entropy
as a global characteristic measure and its decomposi-
tion according to Eq.3, which provides an alternative
measure to rank the importance of proteins within the
network. Figure 1 shows that proteins with high rank
are more often essential than expected by chance.

Figure 1: In the main figure we define 5 classes of
C.elegansproteins according to their rank with re-
spect to entropic contribution: 1-100, 101-200. . ..
In all these high ranking cases the fraction of essen-
tial proteins is significant. The expectation from 100
random proteins is shown as horizontal lines (± one
standard deviation). The inset shows the same anal-
ysis for taking larger bins of 500 proteins. Again
we can see an enrichment for high-ranking proteins,
while there is an under-representation of essential
proteins for proteins with small entropic contribu-
tions ( for ranks> 1000)

5 Systematic Errors

As was mentioned above, the current large-scale data
has sizable errors. Therefore we now investigate,
whether the observed enrichment of essential proteins
in top-ranking lists is robust against known sources of
systematic errors.

First we extended the analysis of the previous sec-
tion and evaluate the prevelance of essential proteins
more systematically. For a given number,N1 of top-
ranking proteins we observe a certain number,N12 of
essential proteins. This fraction can be translated into
a probability (hypergeometric score) to observe such
an overlap by chance, given a total ofN proteins of
whichN2 are essential.

In figure 2 we plot this probability against the num-
ber of top-ranking proteins for several setups. Our
initial analysis (full circles) shows a steep decline
of hypergeometic p-values and a systematic devia-
tion from p-values obtained from randomized list of
proteins (solid line). This reiterates the observation
from the previous section. Next we tested the ef-
fect of false positive interactions by randomly delet-
ing 50% of all edges (interactions) from the protein
interaction network. This gave rise to a new ranking
of proteins. Figure 2 illustrates that, despite this dras-
tic change, the correlation is only moderately affected
(triangles down). Missing interactions, on the other
hand, can be expected to have a more pronounced ef-
fect. If, in a similar spirit, we increase the number of
all interaction by 50% (random link addition), the en-
tropic ranking will also change and the corresponding
lethality assignment will become less and less pre-
dictive (triangles up). Notice though, that even with
such large assumed error rates, the lethality assign-
ment based on entropy is still significantly better than
random (solid line).

Figure 2: Randomized Networks. Here we analyse
the correlation of entropic contribution and lethal-
ity assignment in the light of possible experimen-
tal errors forC.elegans. To this end we have added
and removed a sizeable fraction of random interac-
tions to the original data (full circles). While a large
fraction of false positive errors (triangles down) does
not significantly change the observed correlation, a
large number of false negatives would reduce the sig-
nificance of the observed correlation (triangles up).
As expected, completely randomised interaction net-
works do not show any correlations as signified by
the flat behaviour of the solid line.

Different cellular locations are known to influence
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the results of protein interaction screens. Therefore
we have also tested our result against this possible
bias by selecting randomized groups of “top-ranking”
proteins, while maintaining their distribution with re-
spect to cellular components. We find that the ob-
served correlation is robust against this experimental
artefact (data not shown).

Given the predominance of degree-based methods
for network analysis, we also compared our novel im-
portance measure, entropic contribution, to protein
connectivity. While the two measures show a correla-
tion for large degree, there are also clear differences,
see Fig.3. Since entropy is a global measure, entropic
contribution also takes into account the overall po-
sition of a protein within the network. This has the
effect that proteins with highly connected interaction
partners make a higher contribution to network en-
tropy than proteins (with the same connectivity), but
less connected neighbours.

Figure 3: Here we show (forC.elegans) that con-
nectivity and entropic contribution are correlated, but
distinct from one another. For the process defined in
Equation 2, proteins with high degree tend to have
high entropic contribution. On the other hand there
are also lowly connected proteins with high contribu-
tion to network entropy and hence robustness.

6 Conclusions

In summary, we have shown that the entropic charac-
terisation of protein interaction networks can account
for a significant fraction of proteins whose removal
results in a lethal phenotype.

In our framework proteins are ranked according to
their contribution to network entropy, which is a mea-
sure of microscopic uncertainty (pathway diversity)

and is correlated with the macroscopic robustness of
a dynamical system defined on the network.

We introduced a systematic method to assess the
correlations between the entropic ranking scheme
and phenotypic lethality data, and we have carefully
tested the observed correlations against a number
of possible errors. Our new conceptual framework
provides a rationale to understand macroscopic re-
silience in the light of microscopic uncertainty, as
characterized by entropy, rather than structural net-
work observables. From this perspective, the ob-
served enrichment of essential proteins in ranked lists
of proteins has a natural and clear interpretation: pro-
teins with higher contribution to cellular resilience
are more often essential. Heuristic constructs, such
as node degree, emerge as effective descriptors of
dynamical properties, but our work also illustrates
where one can go beyond such structural measures.
Moreover, and in contrast to degree based-methods,
our approach is extendable to networks where more
quantitative data is available.

In the following we want to point to possible lim-
itations of our approach. First, the phenotypic as-
sessment of a gene disruption is usually done for
one given condition and the observed correlation is
strictly with respect to this single condition. It has
been remarked that so-called viable proteins may
actually play a significant role in untested environ-
ments and their disruption could cause lethal pheno-
types. An exhaustive study of all possible conditions
is clearly beyond experimental capabilities. There-
fore we take the present lethality data as representa-
tive for other conditions and implicitly assume that
the classification of lethal and viable proteins is at
least robust against environmental changes.

A related problem concerns the static representa-
tion of interaction data which discards all dynamical
dependencies. Just as many genes are expressed only
under specific conditions, we also should think of dif-
ferent network realisations of an underlying blueprint
which experimental interaction screens try to estab-
lish. Since the concept of entropy is based on the
notion of dynamical diversity of the microscopic pro-
cesses underlying the cellular states, we believe that
this approach will ultimately be more fruitful than
network characterisations which are solely based on
topology. We should, however, stress that in the
present application we relied exclusively on structural
information of only a part of the complete cellular
network - namely protein-protein interactions. Fur-
thermore, we characterized the microscopic diversity
through a Markov process that maximizes the entropy
based on a Boolean adjacency matrix, rather than
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quantitative information about transition rates. Need-
less to say that actual processes may be different from
this representative one.

To the extent that real processes resemble the one
defined in this work, we can now better understand
the importance of structural network observables as
correlates of dynamical properties. We expect that
structural properties will become less useful concepts
for processes that deviate from the one with maxi-
mal entropy. Our approach is a first attempt to bridge
these two domains and to address structural and dy-
namical questions in a single framework.

This situation can be likened to thermodynamics,
where some properties of large systems can be ef-
fectively described by a number of macroscopic pa-
rameters, regardless of our ignorance about the mi-
croscopic processes. For equilibrium systems, this
simplification is made explicit through relations be-
tween the Gibbs distribution over microstates and
various macroscopic properties that can be derived
from it Gibbs (1901). Formally, our work builds on
an extension of the Gibbs formalism, which also ap-
plies to non-equilibrium systems at steady state Ru-
elle (2004). We implicitly assumed that the cellu-
lar processes on protein interaction networks fall into
this larger class. If these assumptions hold, our ap-
proach should also apply to other complex networks,
and there is hope that some systemic properties can
be elucidated without having to resort to microscopic
details.
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Abstract

An Agent Based Model was used to explore the effects of simulating one and two dimensional grids
over the dynamics of cooperation, under scenarios of biological evolution (BE) and cultural evolu-
tion (CE). Our results show that the way space is simulated does affect the dynamics of evolution.
Interestingly, biological evolution was more susceptible to this effect that cultural evolution.

1 Introduction

Biologists, economists, computer scientists and
physicists have all worked to further our understand-
ing of human and animal cooperation. Yet different
premises underlay these efforts. The main difference
among them is the assumption that social behavior
arrived through biological evolution among animals,
and that culture and rational decision making is a
principal driver of the evolution of cooperation and
sociality among humans (Richardson et al., 2004).
Human cooperation seems to be molded by both,
cultural and biological forces (Kurzban and Houser,
2005).

Important differences between the dynamics of
cultural evolution (Richardson et al., 2004; Ehrlich
and Levin, 2005) and biological evolution (Nowak
and Sigmund, 2004) exist. One important feature
differentiating systems driven by biological and cul-
tural evolution, is that transmission of information in
BE is vertical (heredity), and that in CE is horizon-
tal (imitation of the behaviour of the majority). This
feature affects the speed information is transmitted,
and is sufficient to explain important differences in
the dynamics between both types of evolution (Jaffe
and Cipriani, 2006). Here we want to explore the
effect of the dimensionality of space on the differ-
ent dynamics reported. To do so, we modify a one-
dimensional spatial model (Cipriani and Jaffe, 2005)
to study the differences between the dynamics of co-
operative, group-forming individuals subject to a se-
lective pressure (in this case predation). We based
our model on the well known ‘selfish herd’ concept
(Hamilton, 1971) and assume that cultural and bio-
logical dynamics is driven by natural selection on the
phenotypes (i.e., roles) of individuals: cooperators

and non-cooperators.

2 The Model and Experiments
Based on a cellular automata model that represents
a population of interacting individuals with different
social roles proposed by (Cipriani and Jaffe, 2005),
we construct an agent-based model that incorporated
environments with different spatial structures. Our
initial implementation, made in Python, is for one-
dimensional and two-dimensional toroidal grids en-
vironments of size 10000.

The majority rule implemented here to simulate
cultural evolution (CE) assumed that individuals had
a given probability of imitating the behavior of their
neighbours. Behavioural traits were transmitted ‘hor-
izontally’ via learning by imitation. We contrast
this mechanism with biological evolution (BE) where
learning does not take place and information was
transmitted to offspring via hereditary rules. The
summation of both mechanisms is a metaphor of
species driven by both cultural and biological evolu-
tion.

We studied five scenarios characterized in our
model by the way agents were allowed to interact.
In CE, the rate T determined the probability an agent
would imitate the behaviour (cooperate or not) of the
majority of its neighbors. Production of new agents
for CE was uniform (50/50) and T took three val-
ues: {0, 0.5, 1}. In the BE scenario, empty cells were
replenish in proportional to the current number of in-
dividuals of each kind (cooperators and noncoopera-
tors) and T = 0. In the BE+CE scenario T = 1 and
proportional replenish were applied..

Our experiments consisted in 5 series of simula-
tions, corresponding to the described scenarios. In
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each series (101 simulations) we varied the cost of
cooperation in steps of 0.01. Each simulation was
run for 400 time-steps. For all simulations the “fit-
ness differential” was 0.6 (the difference between the
predation rate of isolated individuals (0.8) and that
for cooperators being part of a group of cooperators
(0.2)).

3 Results
The results of the different experiments are shown in
figures 1 and 2 where each figure summarizes the re-
sults from simulations with environments of either a
1-dimensional grid 1 or a two-dimensional grid 2. In-
terestingly, the differences between the dynamics of
the various scenarious explored were larger when we
simulated a 1-dimentional grid than when using the
2-dimentional grid. The basic morphology of the re-
sulting dynamics was not affected by the dimension
of the simulated space. That is, BE has very sharp
thresholds compared to CE and CE+BE was the strat-
egy favouring most cooperation.
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Figure 1: Influence of the cooperation’s cost over the
proportion of cooperators at the end of simulations.
1-dimensional grid.

4 Discussion
Our experiments confirmed the result obtained by
(Jaffe and Cipriani, 2006). That is, we showed that
the dynamics of CE and BE differed in very basic as-
pects. The fact that we used our own model imple-
mentation, confirms that this observed effects is not
an artefact of the specific model implemented.

We also showed that the dimensionality of the sim-
ulated space, and thus also probably also the topology
of the space (i.e. grids, networks, small world, scale
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Figure 2: Influence of the cooperation’s cost over the
proportion of cooperators at the end of simulations.
2-dimensional grid.

free worlds, etc) will affect the dynamics under study,
making this a complex subject to study.

Our results strongly suggest that simulations re-
porting on the evolution and/or dynamics of cooper-
ation (or probably of anything) should specify if it
is simulating BE or CE, avoiding future confusions
when comparing results of simulations from different
authors.
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Abstract

We present a technique using networks to detect intermediate level community structure within animal
fission-fusion societies. The technique uses simulated annealing to optimise the quality of a proposed
division of the network into communities. We also present a method that allows the statistical signif-
icance of the communities to be determined. We illustrate this technique by the detection of commu-
nities in systems of wild guppies and Galápagos sea lions. In each case, we show that this technique
allows new levels of statistically significant structure tobe revealed. In both cases, this allows new
insights into the structure of the system under investigation.

1 Introduction

The social structure of animals in group living pop-
ulations is likely to exert a profound effect of many
aspects of each animal’s life, as well as that of the
whole population. For example, an animal’s breeding
and reproductive success, its foraging behaviour, the
spread of disease and of information through a popu-
lation will all be affected by with whom, and how fre-
quently the individuals interact (e.g. Barnard (2004)).
In many group living animals such contacts are made
and broken frequently (fission-fusion groups). De-
spite the high frequency with which these individual
associations occur, there is increasing evidence that
robust non-random structures can exist (Whitehead
et al., 2005). Detecting such structures give us new
insights into the social and structural organisation of
such systems, as well as underlying assortative ten-
dencies that may drive them.

We present a method using networks which allows
us to both detect structures at an intermediate level
between that of the dyad and that of the population
within systems of group living animals, and evaluate
the statistical significance of such structures.

The results for wild populations of guppies and
Galápagos sea lions are presented. Both systems
are fission-fusion systems, where individuals are ex-
changed between groups with a timescale much less
than the frequency with which group populations are
observed.

2 Method

Traditionally, intermediate level structure in group
living animals has been studied using techniques such
as cluster analysis, which agglomerate animals based
on some given similarity measure (e.g. Kaufman and
Rousseeuw (1990)). We adopt an alternative, but
complementary, approach and simply consider the
structure of (repeated) interactions over an extended
period of time. From this data, we construct a net-
work. The presence of an edge in this network (rep-
resenting an interaction between two animals) is de-
terminedsolely from the observations of individual
animals, without appealing to any external parame-
ters.

Such a network is constructed from repeated cen-
suses of the population. Animals observed in the
same group on a given census are considered socially
connected, and an edge is made between them. We
combine many such censuses, each sufficiently sepa-
rated in time from the others that they may be consid-
ered independent. We apply filters to the network to
keep only strong interactions between dyads, and to
remove animals that are only weakly associated with
the population.

We use the technique of community detection to
look for intermediate level structure. The idea of a
community within a network is simply put; it is a re-
gion of the network that has a greater density of con-
nections within it than to other parts of the network.
The detection of communities within a network is,
however, non-trivial, though several techniques have
been proposed in recent years to do so (see Newman
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(2004) for a review).
The size of systems that we have studied contain

several hundred nodes. They are thus (by modern
network analysis standards) quite small. This does,
however, allow more sensitive, but computationally
intensive techniques to be used than would be possi-
ble with larger networks. This is especially important
in fission-fusion systems, where the structures that we
seek may be subtle and difficult to detect. This, in
turn, motivates the need to test forsignificancein the
resulting structures that we find.

We maximise a measure,Q, that was originally
proposed as a stopping criterion for earlier com-
munity detection algorithms (Newman and Girvan,
2004) that quantifies the quality of a set of commu-
nities.

Q is maximised via the well known optimisation
technique of simulated annealing (Kirkpatrick et al.,
1983). We impose an initially random division of
community upon the network, and, via a series of
trial moves attempt to find the global maximum of
the function. The partition of communities that re-
sult thus represent our best effort at their detection.
We have performed tests which show the accuracy
and sensitivity of this technique outperforms existing
community detection algorithms.

Significance testing

Almost all community detection algorithms, includ-
ing the simulated annealing technique, will find some
division of community, regardless of whether such a
division is meaningful. Although large values ofQ

suggest a strong community structure, as noted by
Guimerà et al. (2004), this isn’t a sufficient condition
for a meaningfulcommunity structure. We thus need
to test the significance of the communities we find, to
determine whether they are real, or simply artefacts
of the process. We do this via a randomisation test
(Manly, 1997).

We perform a simulation of the census rounds, “ob-
serving” the animals that were seen in each round at
random, but preserving the group sizes that were ob-
served. We thus assume random interaction between
the animals. By comparing the true value ofQ with
the ones that result from repeated runs with the ran-
domised network, we are able to determine the sig-
nificance of the community structure we find.

The communities that we find in the guppy system
are significantly assorted by body-length and the me-
dian depth of water that each animal in the commu-
nity was observed. In previous studies, phenotypic
assortment has been found at the level of the shoal,

but our result suggests that this may also occur at a
higher level of organisation.

Analysis of the sea lion data shows that geograph-
ically separated communities exist. If we apply our
algorithm to each community as a separate entity, we
can seek a further layer of sub-community structure,
whose presence can not be explained by simple cate-
gory assortment or space use, suggesting that there is
evidence of genuine sociality in this system, revealed
by our method.
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Abstract

Gene regulatory systems are complex biological systems accounting for gene expression. Like many
complex systems, they are subject to inherent noise as well as external perturbations posing a threat
to their robust functionality. We review different types and sources of noise in the context of gene
regulatory systems as well as different mechanisms that such systems have adopted to effectively deal
with this deficiency. In so doing we consider whether there might be some link between how certain
structural and architectural properties might have evolved due to a system’s requirement to function
under noise.

1 Introduction
Today’s world is dominated by complex engineered
systems of interacting components, ranging from
electrical power grids to the World Wide Web
(WWW) and the internet. Many of these complex
systems are prone to random failures, noise or even
deliberate attacks that can have devastating and far
reaching implications. Indeed, two massive power
failures in the summer of 2003 (in Italy and across
North America) left many tens of millions of people
without electricity and caused damages estimated in
many billions of dollars. Such large scale events are
typically due to cascading series of failures, reflect-
ing the vulnerability of many of these systems even
to local failure. Other relevant examples could be
denial-of-service attacks that render specific parts of
the WWW unreachable or even the spread of com-
puter viruses through the internet.

In principle, our world is also in abundance of
naturally occurring (as distinct form traditional en-
gineered) complex systems. Such systems appear
across the whole spectrum of life. A cell can be
thought as a complex system of interacting bio-
molecules. Cells, in turn, combine to form tissues,
organs and neural networks. Moving up one level,
multicellular organisms can be regarded as systems
consisting of a multitude of complex subsystems such

∗Corresponding author

as the metabolic and nervous systems. Finally, living
organisms can be regarded as the fundamental com-
ponents of ecosystems, forming prey-predator rela-
tionships, complex food webs and interactions with
the environment.

An interesting property of biological or naturally
occurring systems, that might be used as a basis for
distinction from classical engineered systems, is that
of adaptability. Many such systems have the ability to
respond (or adapt) to environmental or internal per-
turbations and therefore can achieve greater robust-
ness with regard to failures, attacks and noise.

In order to better understand the ability of biolog-
ical systems to withstand or even exploit noise, it is
important to pin down the sources and types of noise
and their effects within specific biological contexts.
This paper focuses on gene regulation networks. In
particular, we present a review of a selection of recent
work which provides an overview of noise in gene
regulatory systems, manifestations of noise therein
and implications for gene expression dynamics and
long-term evolutionary processes. In doing so, this
paper does not offer a comprehensive coverage of the
above but rather attempts to demonstrate how certain
design and organisational principles can effectively
be used as noise barricades and may have evolved to
do so

The remainder of the paper is organised as follows.
Firstly, a brief introduction to the process of gene reg-
ulation is given. We then set out to review different
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sources and types of noise that dominate gene regula-
tory systems as well as some of the mechanisms that
are related to the ability of such systems to preserve
robust and adaptive functionality. From an evolution-
ary perspective, such a discussion can serve as a basis
for interesting questions concerning the role of noise
in the evolutionary process. In this context, we pro-
pose a simple toy model, based on the work of (Kash-
tan and Alon, 2005), that may provide insight into the
evolution of gene regulatory networks. Finally, we
look at some examples of classical engineered sys-
tems and discuss how noise might be affecting their
structure and topology.

2 Gene Regulatory Systems
Progress in molecular biology and experimental
methods has paved the way for a more comprehen-
sive, system-level understanding of cell function (Ki-
tano, 2001). Indeed, many basic biological processes
occurring within a cell have been extensively studied
over the past decades and one can state that their basic
functionality has been mastered, at least to some de-
gree. However, addressing how biological processes
are managed and synchronised, so as to produce ro-
bust functionality requires a more integrative, system-
level approach.

One major and rather complex cellular system is
that which regulates gene expression and determines
the protein profile of the cell. Based upon interac-
tions between DNA, RNA and protein molecules, the
gene regulatory system effectively switches on and
off the expression of genes to accommodate various
intra-cellular needs and changing environmental con-
ditions.

2.1 Gene Expression
Gene expression refers to the set of biomolecular pro-
cesses that result in the production of proteins from
their corresponding genes. Despite its rather com-
plex nature, gene expression is a relatively well un-
derstood process (Orphanides and Reinberg, 2002)
and can effectively be divided into two main steps:
transcription and translation (Fig. 1).

During transcription genes (or sets of genes) are
copied into intermediary (mRNA) molecules. This
step usually involves the utilisation of specific regu-
latory proteins, known as transcription factors (TF),
which bind to the DNA, either inducing (activating)
or restraining (inhibiting) transcription. On the sub-
sequent step of translation, the mRNA molecules are
used as templates for the synthesis of proteins or other

Figure 1: Simple model of the gene expression pro-
cess. Intermediary (mRNA) molecules are produced
from genes (transcription) and are then used as tem-
plates for the production of proteins (translation).
Proteins and mRNA molecules are subject to degra-
dation.

amino-acid chains. It should be noted that gene ex-
pression comprises of multiple interacting processes,
of which transcription and translation form the basic
universal core. Hence, modelling transcription and
translation, simplifies the overall picture of gene ex-
pression but nonetheless captures its essence

2.2 Transcriptional Regulation
It is known that the process of gene expression can
be regulated at different levels by different means
(Orphanides and Reinberg, 2002). Nonetheless at
the simplest level, one often focuses only on regu-
lation accomplished via TFs. This type of regula-
tion, dubbed as transcriptional regulation, gives rise
to transcriptional regulatory systems, which essen-
tially constitute a part of gene regulatory systems1.
This simplification is based on our notion that tran-
scriptional regulation is the dominant type of gene
regulation, at least in prokaryotes that are widely used
as model organisms.

Nevertheless, transcriptional regulatory systems
demonstrate a high degree of complexity. This in-
herent complexity partially arises from the relatively
large size of such systems, which usually account for
the regulation of a few hundred to a few thousand
genes. Additional complexity stems from the fact that
interactions between genes are not trivial. In partic-
ular, a single TF can regulate a number of different
genes and not necessarily all in the same manner or
with the same strength. On the other hand, it is also
possible that the same gene is regulated by multiple

1In the remainder of this paper, the terms gene regulation and
transcriptional regulation will be used interchangeably.
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TFs, which can act either cooperatively or antagonis-
tically.

2.3 From Network Representation to
Dynamics

A network (or graph, consisting of nodes and edges)
is often a useful abstraction for modelling complex
systems. In the case of transcriptional regulatory sys-
tems, a network can be constructed by representing
distinct genes as nodes, and denoting transcriptional
regulation by directed edges between nodes. Exam-
ined under this perspective, it was shown that the
transcriptional regulatory network of Saccharomyces
cerevisiae (yeast) and Escherichia coli revealed cer-
tain architectural (macroscopic) properties, such as
small world compactness and modularity (Shen-Orr
et al., 2002; Maslov and Sneppen, 2002). On a finer
(mesoscopic) level, it was also shown that the these
networks were in significant abundance of simple
building blocks, sometimes referred to as network
motifs (Shen-Orr et al., 2002; Lee et al., 2002).

In addition to mere structural and topological ob-
servations, the network abstraction can effectively be
used to examine how specific interconnectivity influ-
ences the dynamics of the system. In the simplest
instance, one may interpret nodes as basic dynamical
systems and edges as coupling between nodes. Thus,
in the context of regulatory networks, nodes shall de-
note the actual gene expression process of different
genes while edges encode how and with what strength
the protein product (TF) of one gene regulates the ex-
pression of another.

3 Noise in Gene Regulatory Sys-
tems

In the example of the power failure in North America
and Italy, reports suggested that possible causes could
be local fluctuations in the demand load, as well as
external factors such as storms damaging the power
lines. In a similar way, robustness of transcriptional
regulatory systems is threatened by external pertur-
bations as well as inherent noise. Internal and exter-
nal sources of noise may sometimes act on different
timescales, however they both can have significant ef-
fects on the overall functionality of the system.

3.1 Noise in Gene Expression
Perhaps the most intuitive explanation behind noise
at the microscopic level, is the fact that gene expres-

sion is essentially driven by biochemical reactions
that are inherently stochastic processes. In our sim-
plistic model of gene expression (Fig. 1) the rates at
which transcription, translation and degradation pro-
ceed are not fixed, mainly due to stochastic fluctua-
tions. However when the reactants, in our case DNA,
RNA and protein molecules, are in great abundance,
fluctuations are insignificant and the behaviour of in-
dividual steps can be modelled, with a great degree of
accuracy, in a deterministic manner. Unfortunately,
this is not the case in a typical intra-cellular environ-
ment where DNA, RNA, and protein molecules are
usually present only in relatively small numbers. In
such an environment, the effect of stochastic fluctua-
tions becomes a significant factor and thus a stochas-
tic framework is needed to fully capture the dynamics
of gene expression.

Over the past years, various probabilistic models
of gene expression have been proposed in literature
(McAdams and Arkin, 1997; Thattai and van Ouder-
naarden, 2001). Summing up this theoretical work,
origins of noise in gene expression can be effectively
modelled by the following probabilistic events:

• gene activation and deactivation

• transcription initiation

• translation initiation

• decay of the mRNA and protein molecules.

The random activation and deactivation of a gene
is usually attributed to random TF binding on DNA as
well as to other events (e.g. chromatin remodelling).
This switching in gene activity between on and off
states leads to production of mRNA molecules in
bursts of random sizes. Transcriptional bursting in
turn leads to considerable fluctuations in the protein
product, especially when transition rates between on
and off states are slow (Blake et al., 2003; Raser and
O’Shea, 2004).

Similarly to transcription, translation also occurs
in random size bursts. This is due to the random life-
time of mRNA molecules during which several pro-
tein copies can be produced. According to the trans-
lational bursting mechanism a gene with high trans-
lational efficiency (number of proteins produced per
mRNA molecule) is predicted to show a wide distri-
bution of protein abundance, especially when mRNA
molecules exist in low numbers (Thattai and van
Oudernaarden, 2001). The above theoretical specu-
lation for the translation mechanism was indeed veri-
fied by experimental work on Bacillus subtilis strains
(Ozbudak et al., 2002).
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Figure 2: Examples of network motifs in gene reg-
ulatory networks (Lee et al., 2002; Shen-Orr et al.,
2002). A Autoregulation. B Feed-forward Loop. C
Regulatory Chain.

3.2 Noise in Network motifs

It has been proposed that transcriptional regulatory
networks, both in prokaryotes and eukaryotes, are es-
sentially assembled from basic structural units known
as network motifs (Lee et al., 2002; Shen-Orr et al.,
2002). From a dynamical point of view, network
motifs can be thought of as simple signal transduc-
ing and/or controlling mechanisms. They are usually
subject to some input regulatory signals (TF) and pro-
duce a corresponding output in the form of a protein
product. Quite similar to logic gates in digital cir-
cuits, the functionality and dynamical behaviour of
network motifs is dictated by their internal structure.

At this level of organisation, notions of intrinsic
and extrinsic noise are of particular relevance. Fo-
cusing on a simple structural unit of the system, such
as a network motif, the former type reflects noise
produced internally by its components (as discussed
above). This inherent noise propagates through the
network motif leading to a noisy output. On the other
hand, the term extrinsic noise accounts fluctuations
in the output signal that originate from a noisy reg-
ulatory cue. Of particular importance is the notion
of extrinsic noise and how such noise is propagated
through the network motif. As discussed in section
4.2 the strong nonlinearity of the control architec-
ture implies that in some cases external noise will be
suppressed, whereas in other cases, it will be signifi-
cantly amplified.

3.3 Network noise
Gene regulation networks attempt to capture the en-
tire set of regulatory interactions within a cell. As
such, they comprise an intricate web of network mo-
tifs, that are organised into larger structures (or mod-
ules) and form the global gene network of the cell.
These cell networks can have characteristic topolo-
gies and statistics. At the network level, one often fo-
cuses on noise produced by fluctuating environmen-
tal and intra-cellular conditions that affect the overall
stability and robustness of the regulatory system.

Environment is a basic factor compromising the
stability of gene regulatory systems. Environmen-
tal conditions (e.g. temperature, pH) provide cues
that can trigger the system, which in turn responds
by modifying its expression pattern, or switching
between alternate gene expression profiles. There-
fore, environmental fluctuations are effectively trans-
formed into noise in the system. Intra-cellular
sources of noise can be ascribed to a wide variety
of factors directly or indirectly affecting the process
of gene expression. Such factors can be fluctuations
in metabolite concentrations and variability in the ac-
tivity of utility macromolecules (e.g. ribosomes and
polymerases). It has also been known that cell spe-
cific characteristics such as cell size, cell age and the
stage of the cell cycle can alter the gene expression
profile (Kaern et al., 2005).

4 Noise Related Mechanisms
From the above discussion, it is perhaps striking
that transcriptional regulatory systems are not only
functioning under fluctuating environments, but are
also comprised of unreliable, inherently noisy com-
ponents. However, these systems demonstrate re-
markably robust and adaptive functionality that sus-
tains life. To accomplish that, gene regulatory sys-
tems utilise certain mechanisms, at their different or-
ganisational levels. Such mechanisms not only bar-
ricade the system against detrimental effects of noise
but also have the ability to exploit noise in advanta-
geous ways when this is possible.

4.1 Gene Level
At the component level, various distinct strategies can
be adopted by a gene so as to achieve the same lev-
els of protein expression (Fraser et al., 2004). These
strategies essentially differ in the average rates in
which transcription and translation are proceeding.
One such strategy, for example, might yield high tran-
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scription rates while imposing low translation rates.
Simply put, this strategy produces high numbers of
mRNA molecules each one producing in turn low
proteins numbers. On the other extreme a gene can
accomplish the same protein numbers by producing
limited mRNA molecules (low transcription rate) but
each one yielding a high number of proteins (high
translation rate). Finally, intermediate strategies can
also be realised where both transcription and transla-
tion proceed at intermediate rates.

Following our discussion in section 3.1, the least
noisy strategy is the one that maximises transcrip-
tional efficiency while minimising the rate of transla-
tion, since such a combination minimises the effects
of translational bursting. Indeed, Fraser et al. (2004)
in their bioinformatics study discovered that the most
essential genes of yeast showed a strong bias towards
utilising this most uniform expression pattern. More-
over, the fact that not all genes follow the same strat-
egy can be reasoned under the perspective that such a
noise reducing mechanism is energetically expensive
(more mRNA molecules have to be produced) and
it should thus be adopted only by vital genes whose
fluctuations might lead to deleterious effects (Fraser
et al., 2004).

4.2 Network Motifs
Among the network motifs identified in the transcrip-
tional regulatory network of yeast and E. coli, are
those of autoregulation, the feedforward loop and the
regulator chain (Lee et al., 2002; Shen-Orr et al.,
2002). The properties of such structures have been re-
cently studied both in theory and experimentally, us-
ing synthetically engineered gene circuits, providing
us with deeper understanding of how noise is man-
aged in gene regulatory systems.

Autoregulation can be thought of as an elementary
form of control mechanism where the output of the
gene expression process is fed back as a regulatory
input (Fig. 2A). Autoregulation can either be negative
or positive, depending on how the protein-product
regulates its corresponding gene. Becskei and Ser-
rano (2000) engineered regulatory circuits in E. coli
cells to assess the importance of negative autoregu-
lation with regard to noise. The results showed that
the amount of protein produced from autoregulation-
free circuits showed great variability among the cell
population as opposed to the protein produced by the
autoregulated circuit, which demonstrated significant
stability. A similar study by Isaacs et al. (2003) fo-
cused on positive autoregulation, and demonstrated
that the amounts of protein expressed under such a

mechanism follow a bimodal distribution as a result
of the inherent noise. In other words positive autoreg-
ulation amplifies noises to the point that two distinct
phenotypes arise.

Feed-forward loops consist of a gene regulating an-
other in a both direct and indirect manner, through a
third gene (Fig. 2B). There are basically two types of
Feedforward Loops: coherent ones where the sign of
both regulation paths is the same, and incoherent ones
where the signs of regulation are opposite. While
both types were found in the studied networks the co-
herent type appears to be far more abundant (Shen-
Orr et al., 2002). Summarising the theoretical work
of Mangan and Alon (2003) coherent feed-forward
loops may act as low pass filters for extrinsic noise,
responding only to persistent input stimuli.

In the regulator chain motif, a gene regulates a sec-
ond gene which in turn regulates a third one and so
forth (Fig. 2C). The regulatory cascades can be of
varying size and it has been suggested that they ac-
count for series of transcriptional events that happen
sequentially (Lee et al., 2002). A recent experimen-
tal study by Hoosangi et al. (2005) dealt with noise
in transcriptional regulatory cascades as a function
of their length. In this study transcriptional cascades
of several repressing steps were engineered in E. coli
cells. The experimental results were consistent with
the theoretical predictions that long cascades essen-
tially act as extrinsic-noise filters, just as in the case
of coherent feed-forward. However, intrinsic noise
accumulates as the cascade length is increased.

In contrast to the noise filtering properties that
some of the network motifs demonstrate, the noise
amplification accomplished by others seems rather
counter intuitive. Remarkably enough, however, the
latter mechanisms can effectively be used to produce
phenotypic diversification out of noise. This is par-
ticularly beneficial, especially in the case of bacterial
populations, that can exploit diversity to survive and
adapt under fluctuating environments. It has also be
speculated that in a similar way cell differentiation is
accomplished, in the developmental stages in multi-
cellular organisms, form initially homogeneous cell
populations (Kaern et al., 2005). It therefore appears
that proper interaction between different genes is es-
sential not only for the system to be shielded against
noise but also for stochasticity to be exploited.

4.3 Architecture
Little is known about the actual architectural design
of gene regulatory systems and much research is still
in progress. Such enormous biological systems, con-
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sisting in general of thousands of components re-
quire vast experimental and theoretical work to be
explored in their entirety. Even in the case of well
studied model organisms, such as E. coli and yeast,
their fully detailed regulatory networks are yet to be
completed2. Circumventing this limitation, studies,
focusing on subsets of the actual networks, reveal
a rather modular design (Shen-Orr et al., 2002; Lee
et al., 2002). However, for one to generalise these
findings to the statement that gene regulatory systems
are indeed modular, an implicit assumption is often
made posing modularity as a design principle under-
pinning such biological systems.

Nonetheless, modularity is an interesting property
with regard to noise. In particular, it can effectively
be used by gene regulatory networks to isolate inher-
ent noise into constrained subnetworks, thus minimis-
ing the risk of overall failures. Finally, even in ex-
treme cases of deleterious failures, the functional de-
coupling that modularity provides, might under some
conditions, give rise to graceful degradation.

Another interesting architectural property that was
observed in the model regulatory network of yeast
was that of small-world compactness (Maslov and
Sneppen, 2002). This property, reflects the shortness
of regulatory pathways, in the sense that only a few
regulation steps are usually involved in the expression
of a given gene. This property has perhaps an intu-
itive role if one takes into account the fact that noise
propagates through the network. Therefore, minimal
number of regulatory steps could prove to be an es-
sential way of controlling the accumulation of noise.

5 Evolution
From an evolutionary perspective, the above discus-
sion can serve as a basis for interesting questions con-
cerning whether and how the notions of adaptation
and evolution are linked to noise at every level of
organisation. For example at the gene level, Fraser
et al. (2004) provided strong support that certain vital
genes have evolved towards utilising certain expres-
sion strategies that effectively reduce inherent noise.
One might also consider alternative ways of gene reg-
ulation, other than transcriptional, and examine their
noise properties. In doing so, deeper insight can be
gained on whether mechanisms controlling inherent
noise are subject to evolutionary pressure.

Focusing on the mesoscopic and macroscopic or-
ganisational levels one can go even further seeking

2RegulonDB (http://regulondb.ccg.unam.mx), an online
database of transcriptional regulation in E. coli, currently includes
139 experimentally verified TFs.

Figure 3: Simple toy models of regulatory networks
with one TF. A Gene X activates the four genes. B
Regulated genes can also interact with each other.

ways in which evolution may have affected the topol-
ogy of gene regulatory networks. Although such an
issue is still open to discussion, one can examine the
different viewpoints and draw some general conclu-
sions. For instance, one may ask whether modular-
ity and network motifs could evolve purely by muta-
tional drift under neutral evolution. This would im-
ply that such traits provide no selective advantages
for the organism. Alternatively, such traits could
have been subject to selection if, indeed, they of-
fer some evolutionary advantage. In the latter case
noise might prove quite significant, since as discussed
above, there are strong indications that modularity
and internal structures, such as network motifs, pro-
vide a framework that can effectively deal with and/or
reduce noise.

In an attempt to model and gain insight into such
evolutionary processes, it has been proposed that
modularity and network motifs might have sponta-
neously evolved as a result of an ever-changing en-
vironment (Lipson et al., 2002; Kashtan and Alon,
2005). In the example of Kashtan and Alon (2005),
the environment defines modular goals, consisting
of basic subgoals. As these goals are varied it was
shown that modularity was evolved to make the sys-
tem more adaptable to these changes. One may ask
whether such a proposition holds for the case of tran-
scriptional regulatory networks.

Simple toy models of a gene regulatory network
and in silico evolutionary simulations might be used
to demonstrate the effectiveness of different network
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structures in performing modular tasks. Let us con-
sider a simple regulatory network where gene X en-
codes for a TF, which is actively regulating four
genes, namely A1, A2, B1 and B2 (Fig. 3A). The bio-
logical function of these genes is not independent but
assumed to be coupled in some way. For example,
genes A1 and A2 could cooperatively metabolise sub-
stance A whereas genes B1 and B2 could metabolise
substance B. On a more complex network, regulatory
interaction can also exist between the metabolising
genes (Fig. 3B) and indirect feedback can reach the
TF X (not shown). The initial regulatory network
does not demonstrate high modularity and one can
readily think of a more modular version, where for
example genes B1 and B2 are regulated separately
from genes A1 and A2, through a second TF (Fig.
4A-B). Not all network structures achieve the same
efficiency under similar conditions, since they can-
not reproduce exactly the same expression profiles.
For example, in the case where the metabolites A and
B act independently, the network in Fig. 4A can be
more efficient than that in Fig. 3A, since it can inde-
pendently regulate the production of different subsets
of genes.

Following the example of Kashtan and Alon
(2005), mutations in our simple model will not ac-
count for changes in the biological functionality of
genes (i.e. metabolism) but affect the structure of the
network by removing or adding regulatory relation-
ships between genes. Taking the model one step fur-
ther, one can also assume that such mutations might
as well affect the dynamics of the system by altering
the rates which govern gene expression. In addition,
rare events of gene duplication can also be incorpo-
rated. Such events affect the topology of the network
by duplicating nodes while preserving the relation-
ships between them.

Now suppose that under a typical steady environ-
ment, substances A and B are present at fixed (pos-
sibly different) concentrations and the evolutionary
process can optimise the parameters of the system
(rates of gene expression, and interactions) for the
cell to be energetically satisfied. However, if our en-
vironment is not constant, in the sense that concen-
trations of substances can fluctuate, a different net-
work topology may be better suited. This notion of
a changing environment can be thought of as a form
of noise acting at different timescales, even at an evo-
lutionary one. Under a noisy environment, the mere
optimisation of expression rates may be insufficient,
and evolution may act on the topology of the network,
possibly giving rise to more modular topologies

More generally, genes A1, A2, B1 and B2 of our

Figure 4: Simple toy models of regulatory networks
with two TFs (A-B) and up to 6 TFs (C-D). A Two
independent subnetworks where TFs X and Y acti-
vate genes (A1/A2) and (B1/B2) respectively. B Ex-
ample demonstrating a possible regulatory interac-
tion between the TFs. C Example demonstrating a
possible transcriptional interaction between regulated
genes. C Example demonstrating a possible feedback
interaction between the regulated genes and their reg-
ulators. Combinations of the possible kinds of inter-
action B-D are also possible.
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model may take on any role, and may even be TFs
themselves. In that case, we may also envision regu-
latory interactions as illulstrated in Fig. 4C-D. In all
these cases, the same principles apply: changes in
the environment may provide selective pressures that
eventually manifest themselves in the topology of the
network.

Comparing evolutionary simulation with and with-
out environmental noise can lead to some general in-
sights on whether the evolutionary design of such toy
models is affected by noise. In fact, one can go even
further examining a more complicated toy model that
also accounts for inherent noise and determining how
this source of noise might affect the topology of the
network in the long run.

6 The WWW and Power Grids
Similar to gene regulatory systems, classical engi-
neered systems are also prone to noise. Surprisingly
enough, some of these systems also demonstrate ba-
sic structural and organisational commonalities with
biological systems, such as scale-free architectures,
small world interconnectivity, modularity and abun-
dance of network motifs (Dorogovtsev and Mendes,
2003; Milo et al., 2002). Therefore, it is perhaps in-
teresting to try and generalise the above discussion on
gene regulatory networks and examine whether noise,
across biological and engineered systems, might have
any relevance to the emergence of such structural
properties. We pick the WWW and electric grids as
two examples.

The WWW is essentially a vast information plat-
form that enables efficient storage, retrieval and ex-
change of information across a network of nodes
(web pages) and edges (hyper links). Fluctuations in
the demand load of specific information can compro-
mise its accessibility, as they might result in infor-
mation retrieval latency or even unavailability due to
limitations of the underlying communication network
(the internet). To secure the WWW against this type
of noise, certain measures have been adopted includ-
ing mirror links and cached information on different
(independent) web servers3. These measures are ef-
fectively altering the network topology since they in-
volve the creation of new nodes and links and thus
may give rise to certain structural properties. In fact,
the creation of mirror sites can be likened to gene
duplications in evolution. However, perhaps unlike
gene regulatory networks, the WWW is also under

3Note, of course, that the creation of mirror sites cached pages
etc. is motivated by a combination of facts of which network noise
is only one.

a rapid evolutionary process, with information being
published and/or withdrawn and links being created
and/or removed on at least as fast a time scale. This
process is has a dramatic effect on network topology
and is likely to mask the topological effects due to
mirroring and caching. Thus in general the question
of whether noise might be related to the emergence of
certain structural network properties seems somewhat
obscure in the case of the WWW.

A more intuitive and pronounced example might
be that of power grids, where growth takes place on
a much slower time scale, so as to meet the needs
of growing demand, population centres and indus-
trial development. Even for a relatively static net-
work, power grids are usually subject to load demand
fluctuations as a consequence of various external fac-
tors (e.g. seasonal temperature fluctuations). Since
noise in this case cannot be effectively controlled one
intuitive way of minimising its effects is by adopt-
ing a modular grid design so that probable blackouts
can be localised. Indeed, studies of power grids have
revealed a highly clustered design (Dorogovtsev and
Mendes, 2003), which has emerged during their evo-
lution, in part due to our need to secure these systems
to intrinsic and extrinsic sources of noise, as well as
to direct insults.

7 Conclusions
Understanding how complex biological systems,
such as gene regulatory systems, control noise, and
how they evolved to accomplish that, is a vital step
towards their structural and functional understanding.
However, it can also provide valuable lessons for the
design of complex engineered systems. Most engi-
neered systems were specifically designed to utilise
relatively reliable components. Nonetheless, even
rare events may, under certain circumstances, lead to
cascading failures, whether such failures are due to
an internal component or external effects. In order
to shield a system against such rare events, lessons
learnt and design principles gleaned from biological
systems may prove useful. In particular, the preva-
lence of modularity and small scale control structures
in a range of engineered complex systems, could be
suggestive of possible relevance of biological net-
works. It is hoped, therefore, that further research
into the structure and function of biological systems,
as compared with artificial or engineered ones, and
specifically such systems’ ability to effectively han-
dle noise, will lead to practical applications in the de-
sign and regulation of complex systems.
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Abstract

Communications between large numbers of individuals can be modeled as a dynamic graph. The graph
is the integrated effect of the individuals acting autonomously. To identify and analyze communication
patterns, we study dynamic graphs by examining the global behaviour of local, vertex-specific mea-
sures. In this paper, we introduce novel vertex-specific measures, and apply scan statistics to examine
the global extremes of these measures. We apply our methods to a set of email data, and show that the
different measures offer complementary views of the data.

1 Introduction

A dynamic graph is a graph whose edges and ver-
tices may appear and disappear over time. Exam-
ples are phone call graphs, email communication
graphs and graphs representing visits of web pages
by users. In these graphs, vertices represent enti-
ties and edges represent communication transactions.
The variation of dynamic graphs over time can be
used to profile what normal behaviour is, which is
the basis for detecting anomaly and predicting fu-
ture behaviours. Cortes et al. (2003) study phone call
graphs, and present ideas on how to predict behaviour
based on historic data. Priebe et al. (2005) introduce
the use of scan statistics to study dynamic graphs.
They study an e-mail communication graph using a
density-based scan statistic, with the aim of detecting
anomalies.

The dynamic graphs that are of interest to us can
be considered as social networks. In most studies of
such graphs, the dynamic nature of the graphs is sum-
marized into the formation or weighting of a graph
representing a general notion of “connectedness” or
“contact” between vertices over the time period con-
sidered. This summarized graph can then be studied
with the tools of social networks.

Our approach is, instead, to consider the dynamic
graph as a time series of graphs, and to study it by fo-
cusing our attention on a number of locality measures

derived from the links present in the neighbourhood
of a specific vertex. We present a number of promis-
ing measures targetting different features of commu-
nication patterns. Local statistics are generated for
these measures and their extremes are identified and
analysed with scan statistics. Those nodes generating
extremes which deviate from the general trend can be
considered as anomalies and are worth detailed inves-
tigation. We applied our methods to a large collection
of email data; results are presented and discussed in
Section 4.

2 Locality measures

The dynamic graphs we consider are all derived from
communications between individuals. Hence the
graph is the global result of a large number of indi-
vidual actions. It therefore stands to reason that we
can model global behaviour by analyzing and inte-
grating the local behaviour of each vertex. For each
vertex, a variety of time-dependent locality statistics
can be defined. A statistical summary of the behav-
iour of these statistics over time can be used to create
a vertex-specific signal. The set of all signals can be
used to model normal behaviour, and thus to classify
vertices and filter out noise.

Specifically, a dynamic graph is considered as a
time series of static graphs. Typically, the time in-
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terval in which communications have been observed
is divided into shorter intervals. The static graph
corresponding to each interval will have a link be-
tween vertices if an interaction took place between
those vertices in that interval. The locality measures
considered are all defined with respect to the edges
present in the neighbourhood of a vertex. Thek-th
order neighbourhoodof a vertexv consists of all ver-
tices that are at mostk “hops” away fromv. We dis-
tinguish thedynamic neighbourhood, which consists
of all vertices that received a link fromv in a specific
time interval fork = 1, and thepermanent neigh-
bourhood, which consists of all vertices that received
at least one link fromv during the whole time period
under consideration fork = 1.

A time dependent locality measure based on the
density of links in the dynamic neighbourhood of a
vertex was introduced by Priebe et al. (2005). For
k = 1, 2, their measure is the number of edges present
in thek-th order dynamic neighbourhood of a vertex
v. Fork = 0, the measure is defined as the number of
edges originating fromv. Interesting results can be
obtained if this measure is compared with a density
measure derived from the permanent neighbourhood.
For k = 0, permanent and dynamic neighbourhood
density measures are equal, but fork ≥ 1 they can
catch different aspects of a vertex’s behaviour.

Sometimes, a shift in communication patterns may
occur without a change in activity level. To catch
such shifts, we introduce anovelty measure. This
measures the number of “new” links in a neighbour-
hood, i.e. links that have not been observed in a fixed
number of previous intervals. Note that the novelty
measure must be defined with respect to the pastτ -
week neighbourhood.

To capture the behaviour of locality measures over
time, the running mean and standard deviation can be
computed for each measure, and used to standardize
the signal. More specifically, letΨk,t(v) be a time-
dependent locality measure defined with respect to
the k-th neighbourhood. Then, the mean of locality
statistic based on the recent history of the previousτ
time intervals is defined by (Priebe et al., 2005):

µ̂k,t,τ (v) =
1
τ

t−1∑

t′=t−τ

Ψk,t′(v) (1)

The variance of locality statistic based on the re-
cent history of the previousτ time intervals is defined
by:

σ̂2
k,t,τ (v) =

1
τ − 1

t−1∑

t′=t−τ

(Ψk,t′(v)− µ̂t,τ (v))2 (2)

The vertex-standardized locality statistic is defined
by (Priebe et al., 2005):

Ψ̂k,t(v) =
Ψk,t(v)− µ̂k,t,τ (v)
max(σ̂k,t,τ (v), 1)

(3)

3 Scan statistics

A common technique to detect local anomalies in be-
haviour by a global analysis is the use of scan sta-
tistics. Scan statistics are commonly used in signal
analysis, and in the detection of anomalies in local-
ized health data (Glaz et al., 2001). Priebe et al.
(2005) first applied scan statistics techniques to the
local density measures described in the previous sec-
tions. The idea behind a scan statistics approach is to
study a large number of local measures by studying
the extremities of its values over all localities.

In our case, it makes sense to study both the max-
imum and the minimum of the standardized local-
ity measures. More precisely, the statistic studied is
the maximum (minimum) of the vertex-standardized
locality measure which is defined by (Priebe et al.,
2005):

M̃k,t = max
v

Ψ̃k,t(v) (4)

The minimum of vertex-standardized locality mea-
sure is defined by:

M̃ ′
k,t = min

v
Ψ̃k,t(v) (5)

Note that the maximum of the standardized local-
ity measure represents a sudden increase in activity,
while a minimum represents a sudden drop. To deter-
mine whether or not certain values of this maximum
(minimum) represent an anomaly, this statistic is it-
self temporally normalized as follows (Priebe et al.,
2005).

Sk,t =
M̃k,t − µ̂k,t,`

maxk,t,`(σ̂k,t,`, 1)
(6)

Whereµ̂k,t,` and σ̂k,t,` are the running mean and
variance ofM̃k,t defined by:

µ̂k,t,` =
1
`

t−1∑

t′=t−`

M̃k,t′ (7)

σ̂2
k,t,` =

1
`− 1

t−1∑

t′=t−`

(M̃k,t′ − µ̂k,t,`)2 (8)
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4 Experimental setup and results

We apply the methods described above to a large col-
lection of email data from the Faculty of Computer
Science at Dalhousie University. The data are de-
rived from the log files of the email server of Faculty
of Computer Science covering the period from May
2004 to September 2005. There are 16,580 email ad-
dresses involved with 1,500 active accounts (defined
as sending emails to more than five distinct users dur-
ing the period under study). The email addresses are
anonymized before being used in the study, but the
categories of email addresses (faculty, student, staff,
mailing lists, ...) are preserved.

We divide the data into disjoint, one-week inter-
vals. The locality statistics are calculated for the ver-
tices in each window. Using the number of edges
for each vertex as the locality statistic (for k = 0, 1,
2), we compute scan statistics based on(i) the orig-
inal number of edges and(ii) the novelty measure,
as described in Section 2. Figure 1 below shows the
vertex-standardized maximum results for the novelty
measure.
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Figure 1: Time series of standardized scan statistics
and max degrees for k = 0,1,2 with locality statistics
as new links (Novelty) on CS data

The peaks in Figure 1 correspond to dormant or
low activity vertices that suddenly come alive. The
peaks in scan0 (degree of the vertex), are due to
mailing lists that suddenly start transmitting after not
sending any messages in the previousτ weeks. On
the other hand, the peaks in scan2 are, in general,
caused by low activity vertices communicating with a
very high volume vertexviz. an un-moderated mail-
ing list. The situation for scan1 is more complex,
since the first neighbourhood of a very active node
can mask the signal for a node that ultimately shows
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Figure 2: Time series of standardized scan statistics
and min degrees for k = 0,1,2 with locality statistics
as new links on CS data

a prominent peak in scan2.
The minima of the novelty measure are shown in

Figure 2. In this plot, minima in scan0 simply show
the sudden drop in activity of a normally active node,
the effect is purely individual, but may be of inter-
est. Since scan2 captures a large group of nodes, the
minima in scan2 correspond to a general drop in ac-
tivity. The pronounced minima in scan2 correspond
to Christmas (week 32), the first week of May (week
52) which falls in the interval between the winter and
summer terms, and the end of August (week 67) all of
which correspond to general drop in activity around
the university.
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Figure 3: Time series of temporally-normalized stan-
dardized scan statistics and max degrees for k = 1
with locality statistics as links for dynamic and per-
manent windows on CS data

Figure 3 compares the temporally-normalized stan-
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dardized maximum results of the dynamic and per-
manent windows. The two measures show different
peaks. On closer examination of the data we no-
tice that every peak for the moving window (the scan
statistic) captures mailing lists, which are principally
bursty vertices. The peaks of the permanent window
however, all correspond to individual users. The ef-
fect is clearly due to the scan statistic’s susceptibil-
ity to picking up on bursty behaviour. Consequently,
bursty nodes mask the underlying changes in commu-
nication patterns of individual users which might be
of interest. This effect points to separating the nodes
into homogeneous groups and then using the machin-
ery of scan statistics to look for anomalies within the
groups.

These are preliminary results, which, however, in-
dicate that locality measures are indeed a promising
tool to analyze dynamic graphs. Currently, more ex-
periments are being performed to study the effect of
dynamic versus permanent neighbourhoods, and to
compare different varieties of the locality measures.
In the future, we hope to aggregate all locality mea-
sures with the aim of defining a vertex-specific signal,
which can be used to categorize vertices according to
their behaviour.

5 Conclusions and future work

Our experiments show that the application of scan
statistics to local, vertex-specific measures is success-
ful in identifying anomalous behaviour. Different
vertex-specific measures appear to identify different
types of anomalies. Moreover, the relative behaviour
of scan statistics derived from different vertex mea-
sures, or from different levels of locality can indicate
abnormal patterns of special interest. To interpret the
anomalies identified by scan statistics, the vertices
and time periods where peaks occur should be studied
in detail by other methods.

The analysis of our results shows that the peaks
of almost all scan statistics are achieved by vertices
corresponding to mailing lists. This is no surprise,
since scan statistics are especially sensitive to their
bursty behaviour (long periods of inactivity followed
by mass mailings). Changes in communication pat-
terns between individual email correspondents are
easily masked by the presence of such bursty nodes.
In future work, we will develop methods to filter out
“noisy” nodes, by characterizing nodes into groups
that exhibit fairly homogeneous behaviour. Applica-
tion of scan statistics to such groups should lead to
the discovery of a wider variety of anomalies.
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Abstract

In this study we will focus on piece-wise linear state space models for gene-protein interaction
networks. We will follow the dynamical systems approach with special interest for partitioned state
spaces. From the observation that the dynamics in natural systems tends to punctuated equilibria, we
will focus on piecewise linear models and sparse and hierarchic interactions, as for instance described
by Glass, Kauffman, and de Jong. Next, the paper is concerned with the identification (a.k.a. reverse
engineering and reconstruction) of dynamic genetic networks from microarray data. We will describe
exact and robust methods for computing the interaction matrix in the special case of piecewise linear
models with sparse and hierarchic interactions from partial observations. Finally, we will analyze and
evaluate this approach with regard to its performance and robustness towards intrinsic and extrinsic
noise.

Keywords: piecewise linear, robust identification, hierarchical networks, gene expression data,
gene regulatory networks.

1 Introduction

This paper is concerned with the identification of dy-
namic gene-protein interaction networks with intrin-
sic and extrinsic noise from empirical data, such as a
set of microarray time series.

Prerequisite for the successful reconstruction of
these networks is the way in which the dynamics of
their interactions is modeled. The formal mathemati-
cal modeling of these interactions is an emerging field
where an array of approaches are being attempted,
all with their own problems and short-comings. The
underlying physical and chemical processes involved
are multifarious and hugely complex. This condition
contrasts sharply with the modeling of inanimate Na-
ture by physics. While in physics huge quantities of
but a small amount of basic types of elementary parti-
cles interact in a uniform and deterministic way pro-
vided by the fundamental laws of nature, the situation

in gene-protein interactions deals with tens of thou-
sands of genes and possibly some million proteins.
The quantities thereby involved in the actual inter-
actions are normally very small, as one single pro-
tein may be able to (in)activate a specific gene, and
thereby change the global state of the system. For
this reason, gene regulatory systems are much more
prone to stochastic fluctuations than the interactions
involved in normal anorganic reactions. Moreover,
each of these interactions is different and involves
its own peculiar geometrical and electrostatic details.
There are different processes involved like transcrip-
tion, translation and subsequent folding. Therefore,
the emergent complexity resulting from gene regula-
tory networks is much more difficult to comprehend.

In the past few decades a number of different for-
malisms for modeling the interactions amongst genes
and proteins have been presented. Some authors fo-
cus on specific detailed processes such as the cir-
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cadian rhythms in Drosophila and Neurospora (10),
(11), or the cell cycle in Schizosaccharomyces (Fis-
sion yeast) (14). Others try to provide a general plat-
form for modeling the interactions between genes and
proteins. For a thorough overview consult de Jong
(2002) in (2), Bower (2001) in (1), and others (6),
(13).

We will focus on dynamical models, and not dis-
cuss static models where the relations between genes
are considered fixed in time. In discrete event simula-
tion models the detailed biochemical interactions are
studied. Considering a large number of constituents,
the approach aims to derive macroscopic quantities.
More information on discrete event modeling can be
found in (1).

2 Modeling gene-protein interac-
tions as a piecewise linear sys-
tem

The traditional approach to modeling the dynamical
interactions amongst genes and proteins is by con-
sidering them as biochemical reactions, and thus rep-
resenting them as ’rate equations’. The concept of
chemical rate equations consists of a set of differen-
tial equations, expressing the time derivative of the
concentration of each constituent of the reaction as
some rational function of the concentrations of all the
constituents involved. Though the truth of the un-
derlying biochemical interactions between the con-
stituents is generally accepted, a rate equation is not
a fundamental law of Nature, but a statistical average
over the entire ensemble of molecular collisions that
contribute to an actual chemical reaction (22). So,
rate equations are statistical approximations that – un-
der certain conditions – predict the average number of
reactive collisions. The actual observed number will
fluctuate around this number, depending on the de-
tails of the microscopic processes involved. In case
of biochemical interactions between genes and pro-
teins the applicability of the concept of rate equations
is valid only for genes with sufficient high transcrip-
tion rates. This is confirmed by recent experimental
findings by Swain and Elowitz (5), (16), (18), (19).

From the above, we may conclude that modeling
can only be successful for genes with sufficiently
high transcription rates. Even in the optimal case, we
would obtain a high-dimensional (reflecting the num-
ber of genes, RNAs, and proteins involved – so tens
of thousands), non-linear, differential equation, that
is subject to substantial stochastic fluctuations. Much
more problematic is the fact that the precise details

of most reactions are unknown, and therefore cannot
be modeled as rate equation. This could be compen-
sated by a well-defined parametrized generic form of
the interactions, such that the parameters could be
estimated from sufficient empirical data. A generic
form based on rational positive functions is proposed
by J. van Schuppen (23). However, in the few cases
where parts of such interaction networks have been
described from experimental analysis, like the circa-
dian rhythms in certain amoeba (10), or the cell cycle
in fission yeast (14), it is clear that such forms have a
too extensive syntax to be of any practical use.

Let us for the moment forsake these problems,
and consider the dynamics of gene-RNA-protein net-
works. When we assume a stochastic differential
equation as model for the dynamics of the interaction
network, the relation can be expressed as:

ẋ = f(x, u|θ) + ξ(t) (1)

Here x(t), called the state-vector, denotes the N gene
expressions and M RNA/protein densities at time t

– possibly involving higher order time derivatives.
u(t) denotes the P controlled inputs to the system,
such as the timing and concentrations of toxic agents
administered to the system observed. ξ(t) denotes
a stochastic Gaussian white noise term. This ex-
pression involves a parameter vector θ, that contains
the coupling constants between gene expressions and
protein densities. We can consider this system as be-
ing represented by the state vector x(t) that wanders
through the (at least) (N + M)-dimensional space of
all possible configurations. In the formalism of dy-
namic systems theory, eventually x will enter an area
of attraction, and become subject to the influence of
an attractor. An attractor here can be an uniform con-
vergent attractor, a limit cycle, or a ’strange attrac-
tor’. We can understand the entire space as being
partitioned into cells, where such attractors – or their
antagonists so-called repellers – reign. Thus, the be-
havior of x can be described by motion through this
collection of cells, swiftly moving through cells of
repellers, until they enter the basin of attraction of
an attractor. Under the effects of external agents via
the vector u(t) or by stochastic fluctuations via ξ(t)
they can leave this cell, and start wandering again,
thereby repeating the process. Now, a vital assump-
tion is that in each cell the behavior is governed by
specific (un)stable equilibrium points, and therefore
it is possible to make a linear approximation of equa-
tion 1 in the cell with index l as:

ẋ(t) = Flx(t) + Glu(t) (2)

In case of a uniform attractor the largest eigen-value
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of Fl will be negative, and in case of a uniform re-
peller the smallest eigen-value will be positive. We
can now formalize the qualitative behavioral dynam-
ics of gene-protein interactions as predominantly lin-
ear behavior near the stable equilibria – called the
steady states, interrupted by abrupt transitions where
the system quickly relaxes to a new steady state, ei-
ther externally induced or by process noise.

In biology such behavior is frequently observed,
as for instance in embryonic growth where the or-
ganism develops by transitions through a number of
well-defined ’check points’. Within each such check-
point the system is in relative equilibrium. There
is an ongoing debate on mathematical modeling of
cell division as checkpoint mechanisms versus limit-
cycle oscillators, see (20). We will follow the view of
piecewise linear behavior (PWL, also known more
appropriately as piecewise affine behavior). This ap-
proach corresponds to the piecewise linear models in-
troduced by Glass and Kauffman (9), and the qualita-
tive piecewise linear models described by de Jong et
al. (2), (3).

3 The identification of piece-
wise linear networks by L1-
minimization

Next, we will be concerned with the identification
(a.k.a. reverse engineering or reconstruction) of
piecewise linear gene regulatory systems from mi-
croarray data. The nature of our problem – few mi-
croarray experiments and lots of genes – implies that
we are dealing with poor data (as opposed to rich
data), where the number of measurements is a pri-
ori insufficient to identify all parameters of the sys-
tem. One standard approach to circumvent this prob-
lem is by dimension reduction through the clustering
of related genes. We consider the case where time
series of genome-wide expression data is available.
The case of the identification of a simple linear sys-
tem is discussed in Peeters and Westra (15), (26), and
Yeung et al. in (27). In the following, we will be con-
cerned with the identification of piecewise linear sys-
tems. Our aim is to obtain the gene-gene interaction
matrix. This matrix can be interpreted as a connectiv-
ity matrix, and so directly relates to the graph of the
gene regulatory network. With this network we are
able to make statements like: ’the expression of this
gene causes that and that cluster of genes to alter their
expression in this and this way’.

Let us in the following assume a dynamical input-
output system Σ that switches irregularly between K

linear time-invariant subsystems {Σ1, Σ2, . . . , ΣK}.
Let S = {s1, s2, . . . , sK−1} denote the set of
– possibly unknown – switching times, i.e. the
time instants t = sl that the system switches
from subsystem Σl to Σl+1. Similarly as with
the simple linear networks, we assume Hankel ma-
trices X = (x[1], x[2], . . . , x[M ]), and U =
(u[1], u[2], . . . , u[M ]) at M sampling times T =
{t1, t2, . . . , tM}, representing full observations of the
N states and P inputs. The interval between two sam-
ple instants is denoted as τk = tk+1 − tk. In first in-
stance we assume that the system is sampled on reg-
ular time intervals, i.e. that the sample intervals are
equal to τ . Within one subsystem Σl the relation be-
tween the inputs u(t) and outputs y(t) is represented
as a state-space system of first-order differential (for
continuous time systems) or difference equations (for
discrete time systems), using an auxiliary vector x(t)
spanning the so-called subspace.

Continuous time:

ẋ(t) = Flx(t) + Glu(t), (3)
y(t) = Hlx(t) + Jlu(t). (4)

Discrete time:

x[k + 1] = Alx[k] + Blu[k], (5)
y[k] = Clx[k] + Dlu[k]. (6)

The relation between these is given by:

Al = eτFl , (7)
Bl = eτFlGl. (8)

with x[k] = x(tk) .

3.1 Determination of the new state equi-
librium points

Moreover, in each new state the new equilibrium
point µl ∈ RN has also to be established. The lin-
earization near µl can be written as:

∂

∂t
(µl+(x−µl)) = Fl(x−µl)+Glu+O(‖x−µl‖

2)

(9)
which can be rewritten as: ẋ = Flx + G̃lũ, with:

G̃l = (Gl| − Flµl) , (10)

ũ =

(

u

1

)

. (11)

The reasoning is similar in the discrete case, and we
obtain: x[k + 1] = Alx[k] + B̃lũ[k]. Therefore,
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we can follow the original formulation and, using ũ

rather than u as input, estimate Al and B̃l, and using:

B̃l = (Bl| − Alµl) , (12)

to compute µl and B. We will follow this approach,
and from here on drop the tilde, and simple write Bl

for (Bl| − Alµl), and u[k] for
(

u[k]
1

)

.

3.2 General dynamics of switching sub-
systems

In the context of piecewise linear systems of gene reg-
ulatory systems, the dynamics is slightly different to
the case of simple linear systems as in (15). In our
context we assume that we observe all N genes, and
that there is no direct through-put. This means that
Cl = I and Dl = 0 for all l. Therefore, we can
suffice with equation 5 corrected for the equilibrium
point:

x[k + 1] = Alx[k] + Blu[k]. (13)

We furthermore assume that the system matrices
in these equations are constant during intervals
[sl, sl+1 >, and abruptly change at the transition be-
tween the intervals at t = sl+1. We assume that
on the time scale τ the system has relaxed to its
new state. This means that we do not observe mixed
states, which would severely complicate the problem
of identification.

Finally, we define the weights wkl, as the mem-
bership functions of observation k to subsystem Σl;
if observation {x[k], u[k]} belongs to system Σl then
wkl = 1, if {x[k], u[k]} does not belong to Σl then
wkl = 0. This definition allows for a fuzzy definition
of weight, such that wkl ∈ [0, 1]. A priori, we thus
can state two constraints on w:

∀k,lwkl ∈ [0, 1], (14)

∀l

∑

l

wkl = 1. (15)

The challenge in system identification is to esti-
mate the relevant model parameters in piecewise lin-
ear dynamics from empirical observations. The suc-
cess of this approach depends on the amounts of em-
pirical data available – rich or poor, the validity of the
mathematical model, the levels of process noise and
measuring noise, and the nature of the sampling pro-
cess. In case of regular sampling the discrete model
5 can be applied which leads to more straightforward
techniques than the continuous model 3 that should
be used in case of irregular sampling. In the following
sections we will study a number of these conditions
in more detail.

3.3 Identification of PWL models with
unknown switching and regular sam-
pling from poor data

The assumption that the switching times between the
linear subsystems are completely known suits var-
ious experimental conditions, as for instance when
toxic agents are administered. In many biological sit-
uations, however, the exact timing between subsys-
tems is not known, as during embryonic growth and
in many metabolical processes.

3.3.1 As an extension to the simple linear systems
in case state derivatives are available

When a sufficiently accurate record of estimates of
the state derivatives Ẋ = {ẋ[1], ẋ[2], . . . , ẋ[M ]} is
available, we can simply rewrite this problem as a
special case of the method described in the case of
a simple linear problem as in (15). In fact, by ex-
ploiting the data D = {X, U, Ẋ}, the problem can be
stated as a linear equation in terms of new matrices
H1 and H2 as:

Ẋ = H1X + H2U. (16)

In this equation the matrices H1 and H2 relate to the –
unknown – system matrices {A1, B1, . . . , AK , BK}
and ditto unknown weights {wkl} as:

vec (H1) = W · vec (A), (17)
vec (H2) = W · vec (B). (18)

The matrices A, B, and W are composed as follows:

A =





A1

. . .

AK



 , B =





B1

. . .

BK



 , (19)

W = w ⊗ IN2 =





w1,1IN2 . . . w1,KIN2

. . . . . . . . .

wM,1IN2 . . . wM,KIN2





(20)
where ⊗ is the Kronecker-product, and IN2 is the
N2 × N2 identity matrix. Note that equation 16 is
not anymore a linear problem, as the unknown matri-
ces A, B, and W appear in a non-linear way in the
equation. This equation is exactly of the type of sim-
ple linear networks as in (15). Therefore, its solution
method is fully applicable, so that an efficient and ac-
curate algorithm is available for solving this problem
in terms of H1 and H2. However, now the problem
has shifted to solving two additional non-linear equa-
tions:

W � A = H1, (21)
W � B = H2. (22)
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where A, B, and W have to be solved from the known
– i.e. computed – matrices H1 and H2. The operation
� makes the relations in equations 21 and 18 explicit.
This is an underdetermined system that can only be
solved by additional information, such as assuming
sparsity for A, and a block structure for W , such as
the two constraints in equations 14 and 15.

This non-linear problem can thus be solved in
terms of H1 and H2, but not in terms of A, B, and
W . It is a bilinear problem in terms of A and B for
fixed W , otherwise it is a quadratic problem. As a
quadratic programming problem this is not a a well-
posed problem, i.e. it has a nonsingular Jacobian at
optimality and is ill-conditioned as the iterates ap-
proach optimality. Therefore, we follow a different
approach and split the problem in two LP-problems
that are well-posed. The approach is as follows: (i)
initialize A, B, and W , (ii) perform the iteration:

1. Compute H1 and H2, using the approach from
Peeters and Westra (15) on equation 16,

2. Using fixed values for the weights W , compute
A and B using equations 21, and 22,

3. Using fixed values for matrices A and B, com-
pute the weights W using equations 14, 15, 21,
and 22,

until: (iii) a cumulative weighted error criterion E has
converged sufficiently – or a maximum number of it-
erations has passed. A proper choice for the criterion
function is:

E(A, B, W |D) =
∑

k,l

wkl‖Alx[k]+Blu[k]− ẋ[k]‖2
2

(23)
This problem can be solved by minimizing the
quadratic L2-criterion subject to mentioned con-
straints, for instance by a gradient descent method.
We can, however, formulate a different approach for
solving this problem by defining an alternative crite-
rion function E , namely as a linear L1-criterion:

E1(A, B, W |D) =
∑

k,l

wkl‖Alx[k]+Blu[k]−ẋ[k]‖1

(24)
This expression allows for an LP-formulation of the
problem, in which E1 serves as the objective function.
Thus, we can split the non-linear optimization prob-
lem as two separate LP-formulations that are suc-
cessively applied in the iteration; (i) an LP-problem
LP1 for obtaining the system matrices A and B from
minimizing objective function E1 with given weights
w, subject to the constraints in equations 21 and 22;
and (ii) an LP-problem LP2 for obtaining the weights

w from minimizing objective function E1 with given
system matrices A and B , subject to the constraints
in equations 14, 15, 21, and 22.

We will revisit this philosophy in the next Section,
when reviewing the more realistic case when the state
derivatives of the gene expressions are not available.

4 Numerical experiments and
performance of the approach.

This approach resulted in an efficient and fast algo-
rithm that is able to accurately estimate the gene-gene
coupling matrix for tens of thousands of genes based
on only several hundred genome wide measurements,
and that is robust towards measurement noise. With
increasing measurement noise or decreasing number
of measurements the approach retains the strongest
gene-gene coupling links - i.e. the largest modal
value of the coupling matrix A - longest, see Figure
1. A basic assumption in the approach is the sparsity
of the underlying gene-gene coupling matrix, repre-
sented by the number of non-zero entries per row.
If this number grows above a certain threshold the
performance of the approach is severely affected, see
Figure 2b. A number of numerical experiments were
performed with this approach. These controlled ex-
periments consist of the comparison of reconstructed
network with the - known - original network struc-
ture. They were all performed on a PC with an
PIV dual XEON processor of 3.2 GHz and 4096 MB
RAM memory under Linux fedora core 3, using Mat-
lab 6.5 release 13 including the optimization toolbox.
The Matlab routine linprog was used to solve LP
problems; its default solution method is a primal-dual
interior point method, but an active set method can
optionally be used too. For larger problems it turned
out to be essential for obtaining reasonable compu-
tation times, that the LP problems were solved by ap-
plication of the active set method on the dual prob-
lem formulation. Therefore this method was adopted
throughout all the experiments. In line with the def-
initions above, we use the parameters N , M , K to
quantify the size and complexity of the input. In ad-
dition, the sparsity of the interaction matrix A is mea-
sured by the number of nonzero entries per row and
denoted by k (which should be much less than N ).
To quantify the quality of the resulting approxima-
tion Aest of A∗ two performance measures are intro-
duced: the number of errors Ne and the CPU-time Tc

as clocked on the same platform.

1. The number of errors Ne.
Errors in the reconstruction are generated by the
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failure of the algorithm to identify the true non-
zero elements of the original sparse vector x0.
These errors stem from false positives and false
negatives in the reconstructed vector xd. Their
numbers are added up to produce the total num-
ber of errors Ne.

2. The CPU-time Tc.
Using internal clocking, the time Tc required
to perform the full computation was measured.
As all numerical experiments are executed on
the same platform under similar conditions, this
provides a measure to compare problem in-
stances.

The numerical experiments clearly demonstrate the
range where the approach is effective. For relatively
moderate noise levels and a high degree of sparsity
i.e., a small number k of nonzero elements in the rows
of matrix A - and not too many external stimuli p and
switching times K, the approach allows one to re-
construct a sparse matrix with great accuracy from
a relative small number of observations M � N .
For example, a row of A with 30,000 components
of which all but 10 are equal to zero, can be effi-
ciently reconstructed from just 150 independent mea-
surements, see Figure 4a. The sparsity property of A

fits in nicely with the technique of L1-minimization,
which automatically will always set many entries of
the solution A∗ to zero, whereas L2-regression would
spread out the error over all components, thus creat-
ing many small components. Reconstruction of large
networks from this approach is straightforward: each
of the rows of the gene-gene interaction matrix can be
computed independently from the same set of micro-
array experiments.
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Abstract

We present a new general classification scheme of networks, which is appropriate for any type:
weighted or unweighted, and directed or undirected networks. We show that all networks can be
grouped into one of two general classes: democracy or dictatorship networks. In democracy net-
works nodes tend to play equal roles in the network, whereas in dictatorship networks some nodes
are more prominent for the network function. In other words,in democracy networks there is more
cycling of information (or mass, or energy), while dictatorship networks are characterized by a straight
through-flow from sources to sinks. The classification is based on information theoretic measures.
If the redundancy of a given network is smaller than in a randomized version (R < Rr), we call it
democracy network. In dictatorship networks it isR > Rr. We use the measureMedium Articula-
tion to quantify the complexity of networks. Complex networks (MA > MAr) are always between
the pure democracy and the pure dictatorship networks. Taken together, we distinguish four different
network types: pure democracy networks (R < Rr, MA < MAr), complex democracy networks
(R < Rr, MA > MAr), complex dictatorship networks (R > Rr, MA > MAr), and pure dictator-
ship networks (R > Rr, MA < MAr). Finally, different real networks (weighted and unweighted,
directed and undirected) are classified according to our proposed scheme.

1 Introduction

Starting with two pioneering works (2; 18), the last
years have seen a surge of papers dealing with net-
works on fields as diverse as social networks (9; 10;
19), food webs (6; 21; 22), communication networks
(4; 23), transportation networks (7), and sub-cellular
networks, such as metabolic (13), protein interaction
(5; 24), and genetic networks (14). Many interesting
network properties have been found, providing us in-
sights into both, the dynamics on networks (17) and
(on another time scale) the evolutionary processes
leading to such networks (1; 2). However, nearly
all of these papers deal with simple unweighted net-
works, where links are either present or absent. Here
we go one step further and present a characteriza-
tion of the most general form of networks: directed
weighted (non-binary) networks. Heren nodes are
connected by maximallyn2 directed weighted edges
(links) tij from nodei to nodej. Note that both, undi-
rected and unweighted networks can also be analysed

in this framework: in unweighted networks the edges
have only two different weights (0-no edge, 1-edge),
and undirected networks can be understood as di-
rected with all links pointing in both directions (with
the appropriate weight).

Note that many networks could better be described
by their weighted form. For instance, in acquaintance
networks one can quantify the acquaintances, or in
coauthorship networks one can count the number of
jointly written papers. Especially for food webs a
weighted network description seems to be inevitable.
Very small fluxes of mass or energy between nodes
(usually trophic species) are probably not observed
in reality, or may simply be neglected if deemed ir-
relevant. However, the decision whether to take small
fluxes into account affects the statistics of the corre-
sponding unweigted network (22). Up to now there is
much ambiguousness in food web theory. More than
ten years ago the leading “students of food webs” ur-
gently demanded a common food web standard (3).
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However, up to now such a standard has not been es-
tablished, but it seems to be generally accepted that
food webs should contain weighted links (3; 22).

It was shown that weighted networks are substan-
tially more informative than unweighted networks
(21; 22). The latter can simply be deduced from
the former (21; 22): a specialcut-value is defined,
if the weight is largercut the link is set, if not it is
neglected. We have shown that such a deduced un-
weighted network may not be distinguishable from a
random (Erdős-Renyi-) network, although the origi-
nal weighted network was clearly structured (21). A
simpleGedankenexperiment shows the potential am-
biguity of the characterization of weighted networks
with measures developed to describe unweighted net-
works: the highly weighted links can show a scale-
free property (2) (power-law distribution of node de-
grees, taking into account only strong links), but a
different degree distribution may be obtained if also
links with small weights are considered. This prob-
lem is of importance especially for food webs where
no standard exists: it depends on the personal choice
of the ecologist if weak links are also counted. For in-
stance, lions are usually considered as top predators,
but gnats also bit them, so there is a small material
flux also from lions to gnats which is usually not con-
sidered in corresponding food webs.

In either case, it is important to develop a deeper
understanding of weighted networks. Appropriate
statistical measures to characterise such networks are
therefore needed. Theoretical ecologists developed
different information theoretic measures for the de-
scription of directed and weighted food webs (11; 12;
16; 20; 21; 22), which can serve as a starting point for
a corresponding general network theory. Recently,
we proposedMedium Articulation as the first com-
plexity measure for networks (20; 21).

In the first part of this paper we shortly review dif-
ferent appropriate measures to characterize weighted
and unweighted, directed and undirected networks in
a unifying manner. In the second part we show that an
analysis of these measures allows to classify a given
network into one of the four classes: pure democ-
racy networks, complex democracy networks, com-
plex dictatorship networks, and pure dictatorship net-
works. In the last part we discuss the corresponding
class-membership of different real networks.

2 Information theoretic mea-
sures for the characterisation
of networks

In the followingTij exclusively denotes the normal-
ized link fromi to j: Tij = tij/T with the total sum
of links T =

∑
i

∑
j tij (tij is the non-normalized

value). The most important measures we need are
the joint entropy H , the redundancy of the network
R and themutual information I which are defined as
follows (cf.(11)):

H = −
∑

i

∑

j

Tij logTij , (1)

R = −
∑

i

∑

j

Tij log
T 2

ij∑
k Tkj

∑
k Tik

, (2)

I = H − R =
∑

i

∑

j

Tij log
Tij∑

k Tkj

∑
k Tik

.(3)

From (3) one directly recognizesI = Imin = 0 if
Tij =

∑
k Tkj

∑
k Tik ∀ti,j 6= 0. Such a network is

shown in Fig.1a. Furthermore:H = Hmax = 2 logn
if Tij = 1/n2 ∀i, j (Fig.1a); H = Hmin = 0
if Tij = 1 for any i, j and the remaining links
equal zero (eq. (1));R = Rmax = 2 logn if
Tij = 1/n2 ∀i, j (Fig.1a) andR = Rmin = 0 if
T 2

ij =
∑

k Tkj

∑
k Tik ∀Tij 6= 0 (eq. (2)) (Fig.1c).

I = Imax = logn if H is as large as possible
(HImax

= logn) under the conditionR = Rmin = 0
(Fig.1c). Note that all networks in the extreme cases
H = Hmax = Rmax andI = Imax belong to the
class of Kirchhoff-networks where

∑
i Tij =

∑
i Tji

∀j. Summarizing, highly connected networks are
characterized by highH and highR, but low I-
values. Sparsely connected networks, i.e. highly “ar-
ticulated” ones, have lowH- andR-values, but a high
mutual informationI.

Recently, we introducedMedium Articulation as
the first measure for the complexity of networks(20):

MA = I ·R. (4)

MA is a typical complexity measure in the sense that
it is zero in the extreme cases (here: if eitherI = 0 or
R = 0), but maximum in between (8; 15). Thus,
MA = 0 for the networks given in Fig.1a,c. We
have shown previously (20) thatMA = MAmax =
(log n)2/2 for the network in Fig.1b (link weights
should all be equal in the extreme cases).
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Figure 1: Three different 4-node-networks. a) max-
imally connected,H = Hmax, R = Rmax, I = 0,
MA = 0; b) moderately connected, i.e. moderately
articulated,R = Rmax/2, I = Imax/2, MA =
MAmax; and c) minimally connected, i.e. maximally
articulated,R = 0, I = Imax, MA = 0.

3 Complex and non-complex
democracy and dictatorship
networks

Here we show that the measures described above can
be used to classify all networks into one of four dif-
ferent classes. For that purpose, the redundancyR
and the medium articulationMA of a given network
are compared with the meanRr and MAr of cor-
respondingly randomized networks (edges are ran-
domly rewired). Note that the joint entropyH of
a given network does not depend on the network’s
topology, but only on the number and weights of the
edges. It followsH = Hr = R + I = Rr + Ir. If
R < Rr it follows I > Ir and vice versa, thusI does
not carry any additional information. Fig.1 shows that
R = 0 for minimally connected networks with a ring
structure. A corresponding analysis shows that mini-
mally connected networks can also have a vanishing
mutual information (i.e. maximum redundancy for
the given edges), namely star-shaped networks:I =
0 if all links are going out from one single node or if
all links are pointing to it. Obviously, ring-networks
with R = 0 have a lower redundancy than their ran-
dom counterpartsR < Rr. Because in such networks
the nodes play equal roles we call themdemocracy
networks. Dictatorship networks, in contrast, have
R > Rr (i.e. I < Ir). The network complexity mea-
sure medium articulation serves to subdivide the two
major groups: complex networks withMA > MAr

lie between pure democracy and pure dictatorship
networks. Summarizing, pure democracy networks
haveR < Rr, MA < MAr, complex democracy
networksR < Rr, MA > MAr , complex dicta-
torship networksR > Rr, MA > MAr, and pure
dictatorship networksR > Rr, MA < MAr.

In the following part of this section we exclusively
deal with directed unweighted networks, i.e.Tij =
1/L (∀Tij > 0), whereL denotes the number of links
(directed edges). Each directed unweighted network
with L links has a joint entropyH(n, L) = log(L),
for any number of nodes.

a

b

Figure 2: Classification of all directed
unweighted 6-node-networks (normalized
R, Rr, I, Ir, MA, MAr). All networks above
the horizontal MAr line are complex networks
(below are non-complex (pure) networks), all net-
works left of Rr are democracy networks (right are
dictatorship networks). a) all networks withL = 6
edges b) all networks withL = 2, 3, ... edges. x
indicates the corresponding exact arithmetic mean
values (Rr, MAr) of the randomized networks.
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Fig.2a shows the redundancyR, mutual informa-
tion I, and medium articulationMA for all networks
with n = 6 nodes andL = 6 directed unweighted
edges. It can be seen that all four different network
types can be found within the class of directedn =
6, L = 6 networks. Fig.2b shows for some selected
L the correspondingR andMA for all n = 6 net-
works, as well as the corresponding random network
valuesRr and MAr. It can be seen that complex
dictatorship networks only exist for smallL. Anal-
ysis shows that for a givenn there are many more
complex democracy, than complex dictatorship net-
works. Pure democracy networks only exist for even
smallerL. In other words, most democracy networks
are complex, whereas most dictatorship networks are
non-complex.

Our classification scheme also allows to extract a
special information about a given network: ifR < Rr

(democracy), the information (or mass, or energy)
tends to cycle in the network, ifR > Rr (dicta-
torship) there is a tendency for straight information
through-flow from sources to sinks. Thus, democ-
racy networks are cycling networks, and dictatorship
networks could also be named source-sink networks.

4 Classification of real networks

In contrast to the well-known network classifications
”small-world”(18) and ”scale-free”(2) our classifica-
tion scheme is of maximum generality. It is appli-
cable to all four network types: directed and undi-
rected, and weighted and unweighted networks. Ta-
ble 1 shows the classification for some real networks
of each of these types. The analysed food webs are
always dictatorship networks. This seems plausible,
because of the underlying trophic hierarchy. It is
well-known that predators are mostly controlling dif-
ferent prey one trophic level below themselves. Four
of the five directed unweighted food webs are non-
complex, whereas 11 of 12 directed weighted food
webs are complex. For a first corresponding compar-
ison we have taken the largest weighted network (n =
66) as unweighted (i.e. all fluxes above thecut = 0
are 1 (Tij = 1/66), the others are 0) and obtained
also a pure dictatorship network (R = 0.68 > Rr =
0.60, MA = 0.65 < MAr = 0.94). With othercut-
values we again obtained complex dictatorship net-
works (cut = 1/10000, 1/100, 1/10 · tij,max). In
future we will study the dependency of the classifica-
tion oncut-values more in detail.

In the analysed two neural networks the nodes are
neurons and the weights correspond to the synap-
tic strength between the neurons (male adult worm

(jsh), hermaphrodite worm (n2u)). Interestingly, both
networks are pure dictatorship networks, that means
there is a tendency to straight information through-
flow from sources to sinks. This feature is even more
pronounced in the neural network of the male adult
worm.

In the undirected weighted railway network of the
German federal state Brandenburg nodes are stations
and weights correspond to spatial distances. It is a
pure democracy network. The cycling property can
easily be understood, because the whole railway net-
work has the form of a cycle: it is circled around
Berlin (Fig.3). It will be interesting to compare this
result to other transportation networks.

Figure 3: The Brandenburg railway network.

The analysed protein-protein interaction network is
of the pure democracy type, which indicates that, on
average, proteins play similar roles in the correspond-
ing networks and the information is cycling. It seems
possible to extract biologically important information
from a classification analysis of different protein net-
works. A lower complexity could, for instance, in-
dicate perturbation or disease, but future studies are
needed.

5 Conclusion

Using information theoretic measures to character-
ize networks, we have introduced the four network
classes pure democracy networks, complex democ-
racy networks, complex dictatorship networks, and
pure dictatorship networks. This general classifica-
tion scheme holds for all types of networks, weighted
and unweighted, as well as directed and undirected
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Table 1: Classification of real networks. Data
from: the directed unweighted networks
(www.cosin.org/extra/data/foodwebs/web.html),
the directed weighted food webs
(www.cbl.umces.edu/ ulan/ntwk/network.html),
the directed weighted neural networks
(elegans.swmed.edu/parts/neurodata.txt),
the Brandenburg railway network
(www.bahnstrecken.de/strecken.htm), and the
E.coli protein-protein interaction network
(www.cosin.org/extra/data/proteins).

Networks n L R Rr MA MAr

directed and unweighted
(food webs):
Grassland 88 137 0.232 0.18 0.589 0.532
Little Rock Lake 183 2494 0.613 0.508 0.675 0.986
Silwood Park 154 370 0.396 0.219 0.605 0.645
St. Martin Island 45 224 0.524 0.446 0.784 0.945
Ythan Estuary 135 601 0.452 0.328 0.724 0.851
directed and weighted:
(food webs)
fw1 21 82 0.11 0.037 0.09 0.044
fw2 21 61 0.124 0.036 0.097 0.047
fw3 36 122 0.186 0.104 0.319 0.243
fw4 36 172 0.295 0.084 0.121 0.173
fw5 21 55 0.303 0.249 0.598 0.595
fw6 66 791 0.159 0.022 0.132 0.041
fw7 43 348 0.233 0.057 0.107 0.104
fw8 32 158 0.263 0.099 0.247 0.22
fw9 51 270 0.269 0.133 0.365 0.323
fw10 34 158 0.259 0.164 0.451 0.407
fw11 34 149 0.245 0.139 0.385 0.333
fw12 34 115 0.284 0.177 0.462 0.438
(neural networks)
C. elegans (jsh) 190 4336 0.451 0.399 0.868 0.933
C. elegans (n2u) 202 3963 0.446 0.403 0.883 0.936
undirected and weighted:
Railway network 213 332 0.108 0.115 0.339 0.352
undirected and unweighted:
E. coli prot-prot interaction 270 1432 0.403 0.43 0.793 0.966

networks. Our first analyses show that special types
of real networks belong to special classes. Un-
weighted food webs, for instance, are pure dictator-
ship networks, whereas the analysed weighted food
webs are complex dictatorship networks.
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Abstract

We investigated the structure of Wikipedia, the well known Web-based encyclopedia, as a very large-
scale hyperlink network by using network analysis methods. We analyzed the time evolution of the
number of articles and links, applied core-extraction methods to identify highly interconnected subnet-
works, and compared different centrality measures to understand its characteristics.

1 Introduction

According to its website1, Wikipedia is a multilingual
Web-based, free-content encyclopedia. It is written
collaboratively by volunteers, allowing articles to be
changed by anyone with access to a Web browser.
The project began on January 15, 2001 as a comple-
ment to the expert-written Nupedia, and is now op-
erated by the non-profit Wikimedia Foundation. The
English-language version of Wikipedia has more than
880,000 articles as of November 2005.

It is an interesting challenge to apply network
analyses to such a large-scale network like Wikipedia
to unveil its basic structure and extract useful in-
formation. There are a number of reasons why the
Wikipedia network is so attractive. First, the size
of the network is enormous: there are more than
880,000 articles and more than 27,000,000 links as of
November 2005. Sophisticated but time-consuming
methods, such as clique-based community extraction
approaches, are not applicable: even calculating the
graph diameter of the entire network takes a lot of
time. We, therefore, need to invent fast and efficient
algorithms for existing methods or develop alterna-
tive approximation methods. Second, it is a rapidly
growing network. The revision records show that
there were only about 1,000 articles and 9,000 links
in April 2001. We can study growth patterns by using
the network as a typical example of asynchronously
updated and collaboratively built network. Third,
it is a relatively well-organized and comprehensible
network. The semantic information inherent in the
Wikipedia network as an encyclopedia, such as ar-
ticle titles, article contents, and category hierarchies
can be used to verify and evaluate the correctness and
usefulness of a method for network analysis.

1http://en.wikipedia.org/wiki/Wikipedia

This paper is organized as follows. In Section 2,
we analyze the growth pattern of the Wikipedia net-
work, and show that it follows the densification power
law. In Section 3, we apply community extraction
methods to an undirected network generated from
Wikipedia and investigate its community structure. In
Section 4, we calculate and compare centrality mea-
sures for the directed Wikipedia category network
and discuss their different features. Section 5 con-
cludes the paper.

2 Time evolution
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Figure 1: Number of articles versus number of links

The articles in Wikipedia are divided into several
namespaces including the main namespace, consist-
ing of all regular articles, and the category name-
space, consisting of articles that index regular arti-
cles. We first focus on the main namespace. Each
Wikipedia article has number of references to other
articles, expressed as hyperlinks. We treat a reference
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from an article to another as a link.
Figure 1 shows the time evolution of the number

of articles (x-axis) and the number of links (y-axis)
on a logarithmic scale. Each point in the graph cor-
responds to a monthly snapshot of the Wikipedia net-
work in the period from January 2001 to November
2005. This graph illustrates the power law relation-
ship (R2=0.98), and is called a densification power
law plot (Leskovec et al., 2005). The fact that the
slope of the plot isa=1.30 > 1 indicates that the net-
work is becoming denser over time, with the number
of links growing super-linearly with the number of
articles. The value is lower than that of the citation
network reported in (Leskovec et al., 2005), but still
clearly exhibits super-linear growth. It is clear, then,
how rapidly the Wikipedia network has been growing
and densifiying the relationship between articles in a
scale-free fashion.

3 Community extractions

In this section, we focus on an undirected network by
considering that two articles are linked if both articles
refer to each other, and taking the maximal connected
component, resulting in an undirected network with
536,724 nodes and 1,337,902 links This undirected
network, as well as the directed one discussed in the
next section, is obtained from the Wikipedia snapshot
created on 24th September 2005.
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To understand the structural and functional prop-
erties of a large-scale network, it is crucial to iden-
tify subnetworks (communities) in which the nodes
are more highly interconnected than to the rest of the
network. There are several such community extrac-
tion methods published in the literature. For example,
Palla et al. (2005) proposed a method called “Clique
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Figure 3: Number of communities obtained by the
k-core andk-dens method for eachk

Finder” based on the notion ofk-clique (complete
subgraphs of sizek) 2. They define ak-clique com-
munity as a union of allk-cliques that can be reached
from each other through a series of adjacentk-clique
(where twok-cliques are called adjacent when they
sharek−1 nodes). Unfortunately, their method is not
suitable for a large-scale network, because finding all
k-cliques isNP -hard and algorithmically intractable.

Another well known method is calledk-core com-
munity extraction ork-core decomposition. The
notion of k-core was first introduced by Seidman
(1983). Ak-core community is defined as a maximal
subgraph in which each node is adjacent to at least
k − 1 nodes in the subgraph.

Saito et al. (2006) proposed thek-dense commu-
nity method that extends the concept ofk-core and
approximates thek-clique method. Thek-dense com-
munity is defined as a maximal subgraph in which
each two-clique (i.e., pair of adjacent nodes that are
connected by a link) has at leastk−2 adjacent nodes
in common that connect to both of the nodes in the
clique, in the subgraph. Thek-dense method is more
computationally efficient than thek-clique method
and as simple as thek-core method. It is obvious that
ak-clique is included in ak-dense component, which
is included in ak-core component.

We appliedk-core andk-dense extraction methods
to the Wikipedia network for all possiblyk values.
For eachk, the network is divided and pruned, and a
set ofN communities{Ck

i }1≤i≤N is obtained. Let
Ck

max be the largest community in{Ck
i } andDk be

the total number of nodes (articles) in{Ck
i }. Figure 2

illustrates howDk andCk
max change ask changes,

for bothk-core andk-dense methods. Figure 3 shows
the number of communities for eachk.

2We use the termk-clique as a clique consisting ofk nodes.
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From these figures, we can see that thek-core re-
sults consist of one dominant community and possi-
bly other much smaller ones. The dominant commu-
nity is either too large as a single community (for
small ks) or is the only community extracted (for
largeks), which makes the extraction results not suf-
ficiently informative. On the other hand, thek-dense
results consist of an appropriate number of smaller
communities which are comparable in sizes for ap-
propriate choices ofks and thus they are more infor-
mative.

For example, thek-dense method fork = 12 ex-
tracts total 37 communities. They include a commu-
nity of baseball events, airplanes, airports, authors,
and German cities. Twenty-two communities, includ-
ing these five communities, belong to one same com-
munity if thek-core method fork = 12 is used.

Figure 4 shows a two-dimensional layout of the
articles, calculated by using the spring method (Ka-
mada and Kawai, 1989) (here, links are not shown).
Because it is hard to plot all the 536,724 pages at
once, articles not included even in low-degree com-
munities are omitted from the spring-model calcula-
tion for computational efficiency. Thus, 9,773 pages
are plotted in total including gray dots correspond-
ing to articles in low-degree (6-dense) communities,
and black dots (amount to 687 pages) in high-degree
(12-dense) communities. The graph distance between
articles are calculated from the original network. We
can observe that the high-degree communities exist
across the base network as clusters and form a char-
acteristic structure.

4 Centralities

Each regular article in Wikipedia belongs to one or
more categories, and each category has its own arti-
cle (in the category namespace) to index correspond-
ing regular articles. They form category hierarchies,
but ones that are loose and loopy. In this section, we
consider a directed network with 71,993 articles and
117,426 links in which a directed link corresponds to
a reference, with its direction from a sub-category to
a super-category.

We applied well known centrality measures such
as PageRank (Brin and Page, 1998) and HITS (Klein-
berg, 1999) to the Wikipedia category network. Be-
cause of the inherent nature of the category structure,
we would expect that some fundamental concepts in
the human knowledge should appear at the top of the
rankings. Table 4 shows a portion of the category ar-
ticle rankings. PageRank ranking and HITS authority
ranking, as well as the number of links directed to

Figure 4: The Wikipedia network structure

the article (in-link degree) and the number of articles
that are reachable by iteratively following the in-links
backward, are respectively shown in the columns la-
beled PRNK, HITS, INDEG and NRCH.

The top five rows correspond to the top five arti-
cles ranked by PageRank. As expected, very fun-
damental concepts such asCategories, Fundamen-
tal, Humans, and Cultures as well asWikiportals,
which is Wikipedia specific, are listed. This sug-
gests that PageRank most effectively reveals the basic
Wikipedia category structure. PageRank importance
is determined by “votes” in the form of links from
other articles, and the importance of a vote from any
source should be tempered (or scaled) by the number
of articles for which the source is voting (Langville
and Meyer, 2005). In the Wikipedia category net-
work, the votes from the articles located in the lower
level of the category hierarchy are accumulated to the
articles in a higher level.

If we look for a ranking measure that gives those
fundamental concepts high rankings, the number of
reachable articles given in the NRCH column (the
NRCH value) would be a straightforward alternative.
Articles corresponding to fundamental concepts lo-
cated near the top of the category hierarchy must have
a large NRCH value. This is because iteratively fol-
lowing in-links backward corresponds to moving all
the way down the hierarchy. In fact, the top five arti-
cles have all large NRCH values. However, it should
be noted that the converse is not always true. For
example, the article titledAlbert Einsteinhas a large
NRCH value but a lower PageRank ranking.

This gap can be attributed by the distribution of the
number of steps to reach the rest of the articles. Fig-
ure 5 illustrates the relationship between the number
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Table 1: Category article rankings

No. Title PRNK HITS INDG NRCH
1 Categories 1 11662 5 62018
2 Fundamental 2 6586 9 62015
3 Humans 3 5468 20 61966
4 Culture 4 1749 62 61966
5 Wikiportals 5 5472 8 61966
6 Geography 13 1970 48 41991
7 Information 744 3806 4 61968
8 Albert Einstein 183412735 1 61967
9 Albums by artist 76 1 1387 1436

10 American albums 885 2 373 158
11 Canadian albums 1276 3 313 99
12 Alternative rock albums 923 4 255 135
13 British albums 1991 5 235 55

of steps to reach other articles (x-axis) and the num-
ber of articles at those steps’ reach (y-axis). The num-
ber in parentheses for each article title is the PageR-
ank ranking. The articleCategorieshas a more con-
centrated and steeper distribution thanAlbert Ein-
stein, which would explain the fact that the former
has a higher PageRank ranking than the latter even
though their NRCH values are almost the same. Like-
wise, the PageRank ranking ofGeographyis higher
than Information and Albert Einstein, although the
NRCH value forGeographyis smaller. The fact that
Geographyhas a more concentrated and steeper dis-
tribution thanInformationandAlbert Einsteinwould
explain this.
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Figure 5: Distributions of the number of steps to
reach other articles

The last five rows correspond to the top five arti-
cles ranked by HITS authority rankings. The set of
articles with a high HITS ranking is quite different
from that of a high PageRank ranking, and the funda-
mental concepts do not appear at all in the former. We

know that HITS should be applied to a small network
retrieved by a query and not to the entire network, but
it is still worth investigating. In short, HITS rankings
are affected strongly by in-link degrees: the top arti-
cleAlbums by artisthas the highest in-link degree. In
fact, the top fifty articles are all album-related articles
that have strong connections with the top article. The
top fifty hub articles are also all album-related ones.

5 Conclusions

We have investigated the structural properties of
Wikipedia. The network grows by following the den-
sification power law. Thek-dense method gives us
the most informative view of the community struc-
ture. In fact, we can observe that the high-degree
communities exist across the base network as clusters
and form a characteristic structure. PageRank most
effectively reveals the basic category structure.
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