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Abstract

We propose a new method, Parametric Embedding (PE), that em-
beds objects with the class structure into a low-dimensional visualiza-
tion space. PE takes as input a set of class conditional probabilities for
given data points, and tries to preserve the structure in an embedding
space by minimizing a sum of Kullback-Leibler divergences, under the
assumption that samples are generated by a Gaussian mixture with
equal covariances in the embedding space. PE has many potential uses
depending on the source of the input data, providing insight into the
classifier’s behavior in supervised, semi-supervised and unsupervised
settings. The PE algorithm has a computational advantage over con-
ventional embedding methods based on pairwise object relations since



its complexity scales with the product of the number of objects and
the number of classes. We demonstrate PE by visualizing supervised
categorization of web pages, semi-supervised categorization of digits,
and the relations of words and latent topics found by an unsupervised
algorithm, Latent Dirichlet Allocation.

1 Introduction

Recently there has been great interest in algorithms for constructing low-
dimensional feature-space embeddings of high-dimensional data sets. These
algorithms seek to capture some aspect of the data set’s intrinsic structure in
a low-dimensional representation that is easier to visualize or more efficient
to process by other learning algorithms. Typical embedding algorithms take
as input a matrix of data coordinates in a high-dimensional ambient space
(e.g., PCA (Jolliffe, 1980)), or a matrix of metric relations between pairs of
data points (MDS (Torgerson, 1958), Isomap (Tenenbaum, Silva, & Langford,
2000), SNE (Hinton & Roweis, 2002)). The algorithms generally attempt to
map nearby input points onto nearby points in the output embedding.

Here we consider a different sort of embedding problem with two sets of
points X = {x1,...,xx} and C = {cy,...,cx}, which we call “objects” (X)
and “classes” (C'). The input consists of conditional probabilities p(ck|x,,)
associating each object @, with each class ¢,. Many kinds of data take this
form: for a classification problem, C' may be the set of classes, and p(cg|x,)
the posterior distribution over these classes for each object x,,; in a marketing
context, C' might be a set of products and p(cg|x,) the probabilistic prefer-
ences of a consumer; or in language modeling, C' might be a set of semantic
topics, and p(cg|x,) the distribution over topics for a particular document,
as produced by a method like Latent Dirichlet Allocation (LDA) (Blei, Ng,
& Jordan, 2003). Typically, the number of classes is much smaller than the
number of objects, K < N.

We seek a low-dimensional embedding of both objects and classes such
that the distance between object x,, and class ¢, is monotonically related to
the probability p(cg|x,). This embedding simultaneously represents not only
the relations between objects and classes, but also the relations within the set
of objects and within the set of classes — each defined in terms of relations to
points in the other set. That is, objects that tend to be associated with the
same classes should be embedded nearby, as should classes that tend to have



the same objects associated with them. Our primary goals are visualization
and structure discovery, so we typically work with two- or three-dimensional
embeddings.

Object-class embeddings have many potential uses, depending on the
source of the input data. If p(cy|e,) represents the posterior probabilities
from a supervised Bayesian classifier, an object-class embedding provides
insight into the behavior of the classifier: how well separated the classes
are, where the errors cluster, whether there are clusters of objects that “slip
through a crack” between two classes, which objects are not well captured
by any class, and which classes are intrinsically most confusable with each
other. Answers to these questions could be useful for improved classifier
design. The probabilities p(cx|x,) may also be the product of unsupervised
or semi-supervised learning, where the classes c; represent components in a
generative mixture model. Then an object-class embedding shows how well
the intrinsic structure of the objects (and, in a semi-supervised setting, any
given labels) accords with the clustering assumptions of the mixture model.

Our specific formulation of the embedding problem assumes that each
class ¢, can be represented by a spherical Gaussian distribution in the em-
bedding space, so that the embedding as a whole represents a simple Gaussian
mixture model for each object x,,. We seek an embedding that matches the
conditional probabilities for each object under this Gaussian mixture model
to the input probabilities p(cg|x,). Minimizing the Kullback-Leibler (KL)
divergence between these two probability distributions leads to an efficient
algorithm, which we call Parametric Embedding (PE).

The rest of this article is organized as follows. In the next section, we
formulate PE, and in Section 3, we describe the optimization procedures.
In Section 4, we briefly review related work. In Section 5, we compare PE
with conventional methods by visualizing classified web pages. In Section 6,
we visualize hand written digits with two classifiers, and show that PE can
visualize the characteristics of assumed models as well as given data. In
Section 7, we show that PE can visualize latent topic structure discovered
by an unsupervised method. Finally, we present concluding remarks and
discussion of future work in Section 8.



2 Parametric Embedding

Given as input conditional probabilities p(ck|®,), PE seeks an embedding
of objects with coordinates R = {r,}"_, and classes with coordinates ® =
{dr}E |, such that p(cg|x,) is approximated as closely as possible by the
conditional probabilities under the assumption of a unit-variance spherical
Gaussian mixture model in the embedding space:

p(ck|7' ) _ p(Ck;) eXp(—%Hrn - ¢k||2) <1>
Sy pla) exp(=5lrn — éull?)’
where || - || is the Euclidean norm in the embedding space. The dimension of

the embedding space is D, and r, € R”, ¢, € RP”. When the conditional
probabilities p(cg|x,,) arise as posterior probabilities from a mixture model,
we will also typically be given priors p(cx) as input; otherwise the p(cy)
terms above may be assumed equal. Assuming this model in the embedding
space, if the Euclidean distance between object 7, and class ¢, is small,the
conditional probability p(ck|r,) becomes high. Therefore, we can understand
the input conditional probabilities from the visualization result.

It is natural to measure the degree of correspondence between input prob-
abilities and embedding-space probabilities using a sum of KL divergences
for each object: SN KL(p(ck|®,)||p(ck|rn)). Minimizing this sum w.r.t.
p(ck|ry) is equivalent to minimizing the objective function

E(R,®) = — Z Z_: p(ck|z,) log p(ck|rn). (2)

Gradients of F w.r.t. r, and ¢y, are respectively (see Appendix A):

- S (p(c) — plerlra)) r — ), 3)
oOE X
56, Z:: plerlxn) — plexlrn)) (@r — 7). (4)

These learning rules have an intuitive interpretation (analogous to those in
SNE) as a sum of forces pulling or pushing r, (¢x) depending on the differ-
ence of conditional probabilities.



Importantly, the Hessian of E w.r.t. r, is a semi-positive definite matrix
(see Appendix B):

azE K K K T
or orT ZP(CHTn)Gka”g — (Z p(ck|’rn)q§k> <Zp(ck|rn)¢k> . (5)
nOTn = k=1 k=1

since the r.h.s. of (5) is exactly a covariance matrix, where 7" represents
transpose. When we add regularization terms to the above objective function
as follows:

N K
J(R,®) = E(R,®) + 1, >_ [rall* + 16 Y lOxll*,00im6 >0, (6)

n=1 k=1

the Hessian of the objective function J w.r.t. r, becomes positive definite.
Thus we can find the globally optimal solution for R given ®.

The visualization result depends on only initial coordinates of classes ®,
not initial coordinates of objects R, since we can find the globally optimal
solution for R given ®. On the other hand, the result of conventional non-
linear embedding methods (e.g. SNE) depends on the initial coordinates of
objects R. Therefore, we can get more stable results than conventional non-
linear methods in the case that the number of classes is much smaller than
the number of objects. The dependence of initial conditions was small in our
experiments (see Section 5.4).

3 Algorithm

We minimize the objective function J by alternately optimizing R while fix-
ing ®, and optimizing ® while fixing R, until J converges. The optimization
procedure can be summarized as follows:

1. Initialize R and ® randomly
2. Calculate {g% N
3. If [| 22 < e foralln =1,..., N, go to Step 6

4. Calculate modification vectors {Ar, }_,

5. Update R by r, = r, + Ar,, and go to Step 2



6. Calculate 6‘;5

7.1 |25 51* < €, output R, ® and terminate
8. Calculate the modification vector A¢

9. Update ® by ¢ = ¢ + A¢, and go to Step 2

where ¢ = (¢7,...,¢%)", and €. and €4 are convergence precisions. In
Step 1, if we have information of classes, as the initial values for ®, we may
use the result of other embedding methods such as MDS. From Step 2 to
Step 5, R is moved to minimize J while ® is fixed. In Step 4, according to
Newton methods, Ar, is calculated using the Hessian w.r.t. r, as follows:

02 \ 7 aJ
Arp = - (arnarg> or, (7)
9%J

Since BT is positive definite as described above, the inverse always exists.
From Step 6 to Step 9, ® is moved to minimize J while R is fixed. In Step 9,
according to quasi-Newton methods, A¢ is calculated as follows:

0.J
09’

Ap=-\G! (8)

where G! is the approximation of ( 560 ¢T)_1 that is calculated by limited
memory BFGS (Saito & Nakano, 1997) and the step length A is calculated
so as to minimize the objective function.

Step 2 and Step 6 can be calculated using O(N K D) multiplications,
and Step 4 can be calculated using O(N D?) multiplications. The complex-
ity of Step 9 is O(K Ds), where s is the memory size in limited memory
BFGS (Saito & Nakano, 1997). Thus, the complexity of a single iteration
of PE is O(NK), when we assume the dimension of the embedding space
D and the memory size s are constant. We found experimentally that the
number of iterations doesn’t grow with N (see Fig.3).

4 Related work

MDS and PCA are representative linear embedding methods. MDS em-
beds objects so as to preserve objects’ pair-wise distances, and PCA embeds
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objects so as to maximize variance. These methods can find globally opti-
mal embeddings and are computationally efficient, but they cannot represent
nonlinear structure. Recently, therefore, a number of nonlinear embedding
methods have been proposed, such as Isomap, local linear embedding (Roweis
& Saul, 2000), SNE, and connectivity preserving embedding (Yamada, Saito,
& Ueda, 2003). However, these nonlinear embedding methods are more com-
putationally expensive than linear methods and PE. Furthermore, these em-
bedding methods do not use any class information.

Fisher linear discriminant analysis (Fisher, 1950) and kernel discrimi-
nant analysis (KDA) (Baudat & Anouar, 2000) (Mika, Ratsch, Weston,
Scholkopf, & Muller, 1999) are embedding methods that do use class in-
formation. FLDA embeds objects so as to maximize between-class variance
and minimize within-class variance. KDA extends FLDA to nonlinear em-
bedding by using the kernel method. FLDA and KDA are dimensionality
reduction methods for data given as a set of class-object pairs {x,,, c(n)}>_,
(c(n) is the class label of a object x,,), PE, by contrast, uses conditional class
probabilities rather than hard classifications.

PE can be seen as a generalization of stochastic neighbor embedding
(SNE). SNE corresponds to a special case of PE where the objects and
classes are identical sets. In SNE, the class conditional probabilities p(ck|;,)
are replaced by the probability p(x,,|x,) of object x,, under a Gaussian dis-
tribution centered on @,,. When the inputs (conditional probabilities) to
PE come from an unsupervised mixture model, PE performs unsupervised
dimensionality reduction just like SNE. However, it has several advantages
over SNE and other methods for embedding a single set of data points based
on their pairwise relations. When class labels are available, it can be applied
in supervised or semi-supervised modes. Because its computational complex-
ity scales with VK, the product of the number of objects and the number
of classes, it can be applied efficiently to data sets with very many objects
(as long as the number of classes remains small). In this sense, PE is closely
related to landmark MDS (LMDS) (Silva & Tenenbaum, 2002), if we equate
classes with landmarks, objects with data points, and — log p(ck|x,) with
the squared distances input to LMDS. However, LMDS lacks a probabilistic
semantics and is only suitable for unsupervised settings. The formulation
of co-occurrence data embedding (Globerson, Chechik, Pereira, & Tishby,
2005) is similar PE, but it embeds objects of different types based on their
co-occurrence statistics. PE embeds objects and classes based on parametric
models which describe their relationships. Mei and Shelton also proposed a
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method to embed objects of different types, but they focused on visualizing
collaborative filtering data with ratings (Mei & Shelton, 2006).

5 Visualization of labeled data

In this section, we show how PE helps visualize labeled data, and compare
PE with conventional methods (MDS, Isomap, SNE, FLDA, KDA) in terms
of visualization, conditional probability approximation, and computational
complexity.

5.1 Experimental setting

We visualized 5000 Japanese web pages categorized into 10 topics by the
Open Directory Project!, where objects are web pages and classes are topic
categories. We omitted pages with fewer than 50 words and those in multiple
categories. Each page is represented as a word frequency vector, and the
clags prior and conditional probabilities are obtained from a naive Bayes
model (McCallum & Nigam, 1998) trained on these data (see Appendix C).
The dimension of the word frequency vector is 34,248. We used 7, = 0.1,
Ny = 50 for parameters of PE.

5.2 Compared methods

We used 7 methods for comparison that are closely related to PE:
e MDSI1 : the input is squared Euclidean distances between word fre-
quency vectors divided by Lo norm:

2

. 9)
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e MDS2 : the input is squared Euclidean distances between conditional

probabilities:
K

4P = Y (plenle) — plenle) (10)
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e [somapl : the input is squared Euclidean distances between word fre-
quency vectors divided by L, norm as (9). We used 10-nearest neighbor
approach to construct the graph.

e [somap2 : the input is KL divergences between conditional probabili-
ties:
di;" " = KL(p(exl) [p(crl;))- (11)

We used 10-nearest neighbor approach to construct the graph. The
input distance of Isomap need not be symmetric, since the shortest
path distances become symmetric even if the input is not symmetric
distance.

e SNE : the input is KL divergences between conditional probabilities
as (11).

e FLDA : the input is word frequency vectors that are reduced to dimen-
sion 2000 by PCA and their classes 2.

e KDA : the input is word frequency vectors and their classes. We used
Gaussian kernels with variance 1, and regularization as in (Mika et al.,
1999) with regularization parameter 1073,

5.3 Visualization results

Fig.1(a) is the result of PE. Each point represents a web page, and the
shape represents the class. Pages from the same class cluster together, and
closely related pairs of classes, such as sports and health, or computers and
online-shopping, are located nearby. There are few objects near the sports
cluster, so sports pages are easy to distinguish from others. On the other
hand, the regional cluster is central and diffuse, and there are many objects
from other classes mixed in with it; regional is apparently a vague topic.
These can be confirmed by F-measure for each class (Table 1), which is the
harmonic mean of precision and recall. The precision of class ¢; is the ratio

2If the dimension of an object is higher than N-K, the between-class covariance matrix
becomes singular, and FLDA is not applicable (small sample size problem (Fukunaga,
1990)). We avoided this problem using PCA as in (Belhumeur, Hespanha, & Kriegman,
1997).



Table 1: F-measure for each class
arts sports business computers health home recreation regional science online-shop
0.973 0.978 0.929 0.924  0.967 0.957 0.958 0.909 0.964 0.941

of the number of objects correctly estimated at class ¢, compared to the
total number of objects estimated at class ¢, and the recall of class ¢ is the
ratio of the number of objects correctly estimated at class ¢, compared to
the total number of objects classified into class ¢;. The estimated class is
the class that has the highest conditional probability. The high F-measure
of sports reflects the easiness of the classification, and the low F-measure
of regional reflects the difficulty of the classification. Furthermore, we can
visualize not only the relations among classes, but also how pages relate to
their classes. For example, pages that are located at the center of cluster are
typical pages for the class, and pages that are located between clusters have
multiple topics. Some pages are located in the cluster of different classes;
these may be misclassified pages.

MDS1 and Isomapl do not use class information, therefore they yields
no clear class structure (Fig.1(b)(d)). Fig.1(c) is the result of MDS2. Pages
from the same class are embedded closely, but some classes are overlapping,
so we do not see the class structure as clearly as we do with PE. In the
result of Isomap2 and SNE (Fig.1(e)(f)), we can clearly see the class struc-
ture as in PE. Fig.1(g) is the result of FLDA. Since FLDA use the class
information, pages are more class-clustered than in MDS1. However many
clusters are overlapping and it is difficult to understand the relationships
among classes. Linear embedding methods, cannot, in general, separate all
the classes. Fig.1(h) is the result of KDA. All clusters are separated per-
fectly, and we can understand the relationships among classes. However,
little within-class structure is visible.

5.4 Comparison on conditional probability approxima-
tion

We evaluate the degree of conditional probability approximation quanti-

tatively. Since conditional probabilities are not given as inputs in MDST,

Isomapl, FLDA and KDA, we compare PE, MDS2, Isomap2 and SNE.
Let X" (h) = {mefh, ey wzlﬁh} be the set of h objects with the high-
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est conditional probabilities p(cy|x,) in the class ¢, and let Xg°%¢(h) =
{wi{‘{se, o ,wi{‘,ﬁfe} be the set of h objects closest to the class center ¢ in the
embedding space. If conditional probabilities are approximated perfectly,
X" (h) and X @os¢(h) should be identical in each class ¢, since high pos-
terior objects should be embedded close to the class. As a measure of con-
ditional probability approximation, we use the precision between X ,Tgh(h)

and X{°%¢(h) as follows:

1 i 1 % close
prec(h) = = 3~ LIXL (1) 0 X () (12)
k=1

where |- | is the number of elements. MDS2, Isomap2 and SNE do not output
®. Here, we take the object that has the highest conditional probability as
a representative point of the class, and define the coordinates of the class ¢,
to be the coordinates of this object. (i.e. ¢ = Targ, maxp(ck|mn)).

Fig.2 shows precisions of PE, MDS2, Isomap2 and SNE as h goes from
10 to 500. Each error bar of PE represents the standard deviation of 100
results with different initial conditions. By this measure, the conditional
probability approximation of PE is clearly better than those of the other
methods. In Isomap2 and SNE, precisions are low in small A. This is because
Isomap2 and SNE preserve not object-class relationships but objects’ pair-
wise neighborhood relationships. In MDS2, precision goes down as h increase.
This is because classes are overlapping as in Fig.1(c).

5.5 Comparison on computational time

One of the main advantages of PE is its efficiency. As described in Section
3, the computational complexity of a single iteration of PE is O(NK). That
is, the computational time increases linearly with the number of objects. We
evaluated the number of iterations of PE experimentally. Fig.3 shows that
the number of iterations does not depend on the number of objects, where
each error bar represents the standard deviation of 1000 results with different
initial conditions.

MDS computes eigenvectors of the matrix B = —%H A?H . where H =
I — %117“ is the centering matrix and A is the distance matrix. If the
input of MDS is squared Euclidean distances (A;; = ||z; — x;||?), the com-
plexity of MDS increases linearly with the number of objects by Lanczos
methods (Golub & Van Loan, 1996), since the matrix-vector product of

11



Table 2: The slopes of regression lines in Fig.4
PE  MDS1 MDS2 Isomapl Isomap2 SNE FLDA KDA
0.749 0.770 0.834 2.722 2.824  2.232 2898 2.998

B = HXTX H can be calculated using O(NV') multiplications, where V is
the number of non-zero elements in each row of X = (x1,...,x,). Isomap
has O(N?) complexity (Silva & Tenenbaum, 2002). SNE has O(N?) com-
plexity since it uses objects’ pair-wise relationships. FLDA and KDA lead to
generalized eigenvalue problems, whose complexity is the order of the cube
of matrix size.

We measured computational time experimentally, varying the number of
objects from 500 to 5000, on a Xeon 3.2GHz CPU, 2GB memory PC. Fig.4
shows the result 3. The x-axis and the y-axis shows the logarithm of number
of objects and the logarithm of computational time (sec), respectively. The
dotted line is the regression line in the log-log plot. Note that preprocessing
time (conditional probability estimation in PE, MDS2, Isomap2 and SNE,
and dimensionality reduction by PCA in FLDA) is omitted. Table 2 shows
the slopes of regression lines. The slopes represent how computational time
increases with the number of objects. The results are consistent with the
theoretical computational complexities as described above, even though they
are not same since iterative methods are used in all methods.

In the case of 5000 objects, the computational time of PE is 3.13 sec.
Even taking into account the preprocessing time of PE (2.33sec), PE is more
efficient than Isomapl, Isomap2, SNE, FLDA and KDA (with computational
times of 1593sec, 704sec, 1869sec, 211sec and 6752sec, respectively).

5.6 Summary of comparison

In our experiments, we showed that PE approximates conditional probabil-
ities well, and is quite efficient compared to conventional methods. MDS is
also efficient, but does not extract the class structure. SNE and Isomap2
achieves results similar to those of PE, but take more time. FLDA and KDE
are different from PE in input information, and also take more time.

3As a preprocessing step of FLDA, input vectors are reduced by PCA to N — K di-
mensions if N < 2000.
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6 Visualization of classifiers

The utility of PE for analyzing classifier performance may best be illustrated
in a semi-supervised setting, with a large unlabeled set of objects and a
smaller set of labeled objects. We fit a probabilistic classifier based on the
labeled objects, and we would like to visualize the behavior of the classifier
applied to the unlabeled objects, in a way that suggests how accurate the
classifier is likely to be and what kinds of errors it is likely to make.

We constructed a simple probabilistic classifier for 2558 handwritten dig-
its (classes 0-4) from the MNIST database. The classifier was based on a
mixture model for the density of each class, defined by selecting either 10
or 100 digits uniformly at random from each class and centering a fixed-
covariance Gaussian (in pixel space) on each of these examples — essentially
a soft nearest-neighbor method (see Appendix D). The posterior distribution
over this classifier for all 2558 digits was submitted as input to PE.

The resulting embeddings allow us to predict the classifiers’ patterns of
confusions, calculated based on the true labels for all 2558 objects. Fig.5
shows embeddings for both 10 labels/class and 100 labels/class. In both
cases we see five clouds of points corresponding to the five classes. The clouds
are elongated and oriented roughly towards a common center, forming a star
shape (also seen to some extent in our other applications). Objects that
concentrate their probability on only one class will lie as far from the center
of the plot as possible — ideally, even farther than the mean of their class,
because this maximizes their posterior probability on that class. Moving
towards the center of the plot, objects become increasingly confused with
other classes.

Relative to using only 10 labels/class, using 100 labels yields clusters
that are more distinct, reflecting better between-class discrimination. Also,
the labeled examples are more evenly spread through each cluster, reflecting
more faithful within-class models and less overfitting. In both cases, the ‘1’
class is much closer than any other to the center of the plot, reflecting the
fact that instances of other classes tend to be mistaken for ‘1’s. Instances of
other classes near the ‘1’ center also tend to look rather “one-like” — thinner
and more elongated. The dense cluster of points just outside the mean for ‘1’
reflects the fact that ‘1’s are rarely mistaken for other digits. In Fig.5(a), the
‘0" and ‘3’ distributions are particularly overlapping, reflecting that those
two digits are most readily confused with each other (apart from 1). The
‘webbing’ between the diffuse ‘2" arm and the tighter ‘3" arm reflects the large
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number of ‘2’s taken for ‘3’s. In Fig.5(b), that ‘webbing’ persists, consistent
with the observation that (again, apart from many mistaken responses of 1)
the confusion of ‘2’s for ‘3’s is the only large-scale error these larger data
permit.

7 Visualization of latent structure of unla-
beled data

In the applications above, PE was applied to visualize the structure of classes
based at least to some degree on labeled examples. The algorithm can also
be used in a completely unsupervised setting, to visualize the structure of a
probabilistic generative model based on latent classes. Here we illustrate this
application of PE by visualizing a semantic space of word meanings: objects
correspond to words, and classes correspond to topics in a latent Dirichlet
allocation (LDA) model (Blei et al., 2003) fit to a large (>37,000 documents,
>12,000,000 word tokens) corpus of educational materials for first grade to
college (TASA). The problem of mapping a large vocabulary is particularly
challenging, and, with over 26,000 objects (word types), prohibitively expen-
sive for pairwise methods. Again, PE solves for the configuration shown in
about a minute.

In LDA (not to be confused with FLDA above), each topic defines a
probability distribution over word types that can occur in a document. This
model can be inverted to give the probability that topic ¢, was responsible
for generating word x,,; these probabilities p(ck|x,) provide the input needed
to construct a space of word and topic meanings in PE (see Appendix E).

More specifically, we fit a 50-topic LDA model to the TASA corpus. Then,
for each word type, we computed its posterior distribution restricted to a
subset of 5 topics, and input these conditional probabilities to PE (with
N = 26,243, K = 5). Fig.6 shows the resulting embedding. As with the
embeddings in Figs. 1 and 2, the topics are arranged roughly in a star shape,
with a tight cluster of points at each corner of the star corresponding to words
that place almost all of their probability mass on that topic. Semantically,
the words in these extreme clusters often (though not always) have a fairly
specialized meaning particular to the nearest topic. Moving towards the
center of the plot, words take on increasingly general meanings.

This embedding shows other structures not visible in previous figures:
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in particular, dense curves of points connecting every pair of clusters. This
pattern reflects the characteristic probabilistic structure of topic models of
semantics: in addition to the clusters of words that associate with just one
topic, there are many words that associate with just two topics, or just three,
and so on. The dense curves in Fig.6 show that for any pair of topics in this
corpus, there exists a substantial subset of words that associate with just
those topics. For words with probability sharply concentrated on two topics,
points along these curves minimize the sum of the KL and regularization
terms. This kind of distribution is intrinsically high-dimensional and cannot
be captured with complete fidelity in any 2-dimensional embedding.

As shown by the examples labeled in Fig.6, points along the curves con-
necting two apparently unrelated topics often have multiple meanings or
senses that join them to each topic: ‘deposit’ has both a geological and a
financial sense, ‘phase’ has both an everyday and a chemical sense, and so
on.

8 Conclusions and future works

We have proposed a probabilistic embedding method, PE, that embeds ob-
jects and classes simultaneously. PE takes as input a probability distribution
for objects over classes, or more generally of one set of points over another
set, and attempts to fit that distribution with a simple class-conditional para-
metric mixture in the embedding space. Computationally, PE is inexpensive
relative to methods based on similarities or distances between all pairs of
objects, and converges quickly on many thousands of data points.

The visualization results of PE shed light on features of both the data
set and the classification model used to generate the input conditional prob-
abilities, as shown in applications to classified web pages, partially classified
digits, and the latent topics discovered by an unsupervised method, LDA. PE
may also prove useful for similarity-preserving dimension reduction, where
the high-dimensional model is not of primary interest, or more generally, in
analysis of large conditional probability tables that arise in a range of applied
domains.

As an example of an application we have not yet explored, purchases,
web-surfing histories, and other preference data naturally form distributions
over items or categories of items. Conversely, items define distributions
over people or categories thereof. Instances of such dyadic data abound-
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restaurants and patrons, readers and books, authors and publications, species
and foods...—with patterns that might be visualized. PE provides a tractable,
principled, and effective visualization method for large volumes of such data,
for which pairwise methods are not appropriate.

A Gradients

This appendix describes gradients of objective function £ w.r.t. r, and ¢y.
We rewrite the objective function (2) as follows:

E(R,®)
= = > plexl@a) log plck|rn)

n=1 k=1
N K

= =2 plaln) <logp(ck)—1l|f'n or|? —logZp (c eXp(—*H’rn ¢zl|)>

n=1 k=1 =1

=[5

Differentiating (13) w.r.t. r,, we obtain:
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orn Z:: o) Pu) = Siey pcr) exp(—3llrn — @l?)

= Z( p(ex|®n) — pek|mn)) (rn — bi)

= Z_:( p(ck|rn) — plek|xn))dr. (14)

Differentiating (13) w.r.t. ¢, we obtain:

or _ X X (r, — g)plen) exp(blir — o)
G =~ Lrmr =g+ 3 e ST Y E—E
= Z:l(p(ck\wn)—p(cklrn))(¢k—rn). (15)
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B Hessian

This appendix describe the Hessian of the objective function £ w.r.t. r,.
Differentiating (14) w.r.t. 1, we obtain:

0°E :_§¢<W—mﬂMWmPHm—mW
Oradr; U SE ple) exp(= L, — ¢il?)

L pler) exp(—5lra — @ull*) Ty (ra — 1) p(cr) exp(—gllrs — ¢z!!2))
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K
pler|rn)prrl + Zp(ck!"“n)Cﬁk(ﬁg
— ) )
(culr) i — (zp%m )(z (cxlr.) )
K
Ck:‘rn ¢k¢k - (Zp Ck|'rn ) <Z Ck|rn >

>
k=1
3
>l

C Web page classifier

We explain here the naive Bayes model used for the estimation of conditional
probabilities in Section 5. We assume that a web page (considered as a bag of
words) @, in class ¢ is generated from a multinomial distribution as follows:

Vv
p(xnlcr) o< [T O™ (17)

j=1

where V' is the number of word types, x,; is the number of tokens of word
type w; in a page @,, 0i; is the probability that a word token is of type w;
in a page of a class ¢; (6;; > 0, Z}/:l 0r; = 1). We approximate 6; by its
maximum a posteriori (MAP) estimate. The estimated 6; is

Ni+ XV

Or; = (18)

where, N} is the number of pages in a class ¢, C} is a set of pages in a

class cg, A\; is a hyper-parameter. We estimated A\, by a leave-one-out cross
validation method.
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D Hand written digits classifier

The hand-written digits classifier discussed in Section 6 represents each class
as a mixture of Gaussians. The mean of each component is a random sample
from the class, and the covariance for each is the covariance for the entire
data set:

pade) x 3 exp{—3 (@ - en) S @ e} (19

meCl

where x,, is a 256 dimensional vector of pixel grey levels for a hand written
digit, and CY, is the set of samples defining the model for class c.

E Latent topic model

The conditional probabilities of topics in Section 7 are from a Latent Dirichlet
Allocation (LDA) model of a text corpus. In LDA, each document is assumed
to be generated by a mixture of latent topics. The topic proportion vector
for each document is drawn from a Dirichlet distribution. Each word is
generated by first drawing a topic from this distribution, and then drawing
a word from a topic-specific multinomial distribution. Let & be a document,
w,, be the m-th word in the document, M be the number of words in the
document, z, be a latent topic, and K be the number of latent topics. The
generative model of a document is as follows:

@)= [ [ (L3 slonlen 0oteal0)) p0180/) 00, (20

m=1 k=1

where p(w, |2k, V), p(2x]|0) are multinomial distributions and p(%|3), p(0|c)
are Dirichlet distributions. We estimated )y, (the probability of word w,,
given latent topic z;) by Gibbs sampling (Gilks, Richardson, & Spiegelhalter,
1996), (Griffiths & Steyvers, 2004), and obtained conditional probabilities
(probabilities of latent topics given word) by Bayesian inversion.

References

Baudat, G., & Anouar, F. (2000). Generalized discriminant analysis using a
kernel approach. Neural Computation, 2385—2404.

18



Belhumeur, P., Hespanha, P., & Kriegman, D. (1997). Eigenfaces vs. fish-
erfaces: recognition using class specific linear projection. IEFE Trans.
Pattern Analysis and Machine Intelligence, 711-720.

Blei, D., Ng, A., & Jordan, M. (2003). Latent dirichlet allocation. Journal
of Machine Learning Research, 993-1022.

Fisher, R. (1950). The use of multiple measurements in taxonomic problem.
Annuals of Eugenics, 179-188.

Fukunaga, K. (1990). Introduction to statistical pattern recognition. New
York: Academic Press.

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov chain
monte carlo in practice. New York: Chapman & Hall.

Globerson, A., Chechik, G., Pereira, F., & Tishby, N. (2005). Euclidean em-
bedding of co-occurrence data. Advances in Neural Information Pro-
cessing Systems 17, 497-504.

Golub, G., & Van Loan, C. (1996). Matriz computation 3rd edition. Balti-
more, Maryland: John Hopkins University Press.

Griffiths, T., & Steyvers, M. (2004). Finding scientific topics. Proceedings of
the National Academy of Sciences, 5228-5235.

Hinton, G., & Roweis, S. (2002). Stochastic neighbor embedding. Advances
in Neural Information Processing Systems 15, 833-840.

Jolliffe, 1. (1980). Principal component analysis. New York: Springer-Verlag.

McCallum, A.; & Nigam, K. (1998). A comparison of event models for naive
bayes text classification. In Proceedings of aaai workshop on learning
for text categorization (pp. 41-48). Madison: AAAI Press.

Mei, G., & Shelton, C. (2006). Visualization of collaborative data. In Proceed-
ings of international conference on uncertainty in artificial intelligence
(pp. 341-348).

Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Muller, K. (1999). Fisher
discriminant analysis with kernels. Neural Networks for Signal Process-
ing IX, 41-48.

Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by local
linear embedding. Science, 2323-2326.

Saito, K., & Nakano, R. (1997). Partial bfgs update and efficient step-length
calculation for three-layer neural networks. Neural Computation, 123—
141.

Silva, V. de, & Tenenbaum, J. (2002). Global versus local methods in
nonlinear dimensionality reduction. Advances in Neural Information
Processing Systems 15, 705-712.

19



Tenenbaum, J., Silva, V. de, & Langford, J. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science, 2319-2323.

Torgerson, W. (1958). Theory and methods of scaling. New York: Wiley.

Yamada, T., Saito, K., & Ueda, N. (2003). Cross-entropy directed embedding
of network data. In Proceedings of international conference on machine
learning (pp. 832-839). Washington: AAAI Press.

20



Oarts xsports +husiness * computers Dhealth (homevrecreation Aregional <science - online-shop

LN
%D B0 o ++” 1%
health ®.C ++ business

(a) PE

(c) MDS2

21



(e)

(g) FLDA (h) KDA

Figure 1: The visualizations of categorized web pages. Each of the 5000 web
pages is show by a particle with shape indicating the page’s class.
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Figure 2: Experimental comparisons of the degree of conditional probability

approximation. Each error bar of PE represents the standard deviation of
100 results with different initial conditions.
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Figure 3: The number of iterations of PE with 10 classes. Each error bar
represents the standard deviation of 1000 results with different initial condi-
tions.
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Figure 5: Parametric embeddings for handwritten digit classification. Each
dot represents the coordinates r, of one image. Boxed numbers represent
the class means ¢j. x’s show labeled examples used to train the classifier.
Images of several unlabeled digits are shown for each class.
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Figure 6: Parametric embedding for word meanings and topics based on pos-
terior distributions from an LDA model. Each dot represents the coordinates
r, of one word. Large phrases indicate the positions of topic means ¢y, (with
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topics are also shown.
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