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Abstract
In this paper, we revisit the problem of in-
ducing a process model from time-series data.
We illustrate this task with a realistic ecosys-
tem model, review an initial method for its
induction, then identify three challenges that
require extension of this method. These in-
clude dealing with unobservable variables,
finding numeric conditions on processes, and
preventing the creation of models that over-
fit the training data. We describe responses
to these challenges and present experimental
evidence that they have the desired effects.
After this, we show that this extended ap-
proach to inductive process modeling can ex-
plain and predict time-series data from bat-
teries on the International Space Station. In
closing, we discuss related work and consider
directions for future research.

1. Introduction and Motivation

Research on computational scientific discovery stud-
ies methods that generate knowledge in established
scientific notations (e.g., Langley, 2000). Like other
branches of machine learning, most work in this area
has been content with inducing shallow, ’descriptive’
models, provided they are accurate on new test cases.
However, mature scientific disciplines strive for mod-
els that explain behavior in terms of unobserved vari-
ables, entities, or processes. Some researchers have de-
veloped methods that construct explanatory scientific
models, but they have typically focused on qualitative
formalisms (e.g., Vald6s-P~rez, 1995) or on algebraic
relations (e.g., Washio et al., 2000).

Yet many fields of science and engineering develop
quantitative models of dynamic systems that change

over time. Such models are often cast as sets of inter-
acting differential equations that characterize how one
or more variables produce changes in other variables.
Research on system identification (Astrom & Eykhoff,
1971) develops methods that infer the quantitative pa-
rameters for such models, but these assume the model
structure is known. A few researchers have tackled the
task of determining both the model’s structure and its
parameters (e.g., Bradley et al., 1999; Todorovski 
D2eroski, 1997), but their learned models retain a gen-
erally descriptive flavor, in that they do not refer to
unobserved entities.

In a recent paper (Langley, Sanchez, Todorovski, 
D~eroski, 2002), we defined the task of inductive pro-
cess modeling. This paradigm revolves around a novel
class of quantitative process models and their con-
struction from time-series data. Process models are
explanatory in that they account for observations in
terms of interactions among unobserved processes,
which in turn make contact with generic background
knowledge. Inductive process modeling constitutes a
new paradigm for computational scientific discovery
that seems especially appropriate for integrative fields
like Earth science, but it is relevant to any discipline
that utilizes quantitative models of dynamic systems.

We begin by reviewing the notion of process models
and the reasons that existing learning methods are not
sufficient to induce them from time-series data. We
also reexamine our earlier IPM algorithm and some
challenges that arise when it is confronted with data
from a realistic ecosystem modeling task. In response,
we introduce a number of extensions to this algorithm,
along with experimental evidence that they handle
these challenges. After this, we demonstrate the ex-
tended method’s behavior on telemetry data from bat-
teries on the International Space Station. We conclude
by discussing research on related problems and direc-
tions for future work on process model induction.
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Table 1. A process model for a simple aquatic ecosystem.

model AquaticEcosystem;
variables phyto, zoo, nitro, residue;
observables phyto, nitro;
process phyto _exp onential_decay;

equations d~hyto, t, 1] = -0.307 * phyto;
d[residue, t, 1] = 0.307 * phyto;

process zoo_exponential_decay;
equations d[zoo, t, 1] ---- -0.251 * zoo;

d[residue, t, 1] = 0.251 * zoo;
process zoo_phyto_predation;

equations d[zoo, t, 1] = 0.615 * 0.495 * zoo;
d[residue, t, 1] = 0.385 * 0.495 * zoo;
d[phyto, t, 1] = -0.495 * zoo;

process nitro_uptake;
conditions nitro > 0;
equations d~ahyto, t, 1] --- 0.411 * phyto;

d[nitro, t, 1] = -0.098 * 0.411 * phyto;
process nitro_remineralization;

equations d[nitro, t, 1] = 0.005 * residue;
d[residue, t, 1] ---- -0.005 * residue;

2. Induction of Process Models

Explanations in science and engineering are often
stated in terms of generic processes from the domain
in question. We will focus here on a class of processes
that describe one or more quantitative causal relations
among variables. In this framework, a process states
these relations in terms of differential equations (for
a process that involves change over time) or algebraic
equations (if it involves instantaneous effects). A pro-
cess may also include conditions, stated as threshold
tests on variables, that describe when it is active. A
process model consists of a set of processes that link
observable variables with each other, possibly through
unobserved theoretical terms.

2.1. Quantitative Process Models

Table 1 shows a process model for an aquatic ecosys-
tem, based on our discussions with an Earth scien-
tist (K. Arrigo, personal communication, 2003), that
concerns changes in species’ populations, nitrates, and
residue over time. The table shows five processes, the
top two stating that phytoplankton and zooplankton
die at an exponential rate. Another process indicates
that zooplankton preys on phytoplankton, increasing
and decreasing their populations, respectively, but also
that some killed phytoplankton is not absorbed but
produces residue. A fourth process posits that phy-
toplankton uptakes nitrogen, which increases its pop-
ulation and decreases the nutrient. The final process
specifies that residue returns nitrogen to the environ-

ment at a certain rate. The model also states that only
phytoplankton and nitrogen are observable, and that
the uptake process requires the presence of nitrogen.

Given a quantitative process model of this sort and
initial values, we can simulate the model’s behavior
to generate a predicted time series for each variable.
Because models may involve chains of such equations,
the simulator must solve, for each process P, the asso-
ciated algebraic and differential equations for the cur-
rent time step to determine new values for P’s output
variables, use these to solve equations associated with
any processes that occur in the next step on the causal
chain, and so on, until reaching the chain’s final vari-
ables. Moreover, it must utilize only active processes
(those with satisfied conditions) on each time step3

Process models of this sort provide an explanation
of such time-series data, not only because they offer
a causal account and may include unobserved vari-
ables, but because they refer to processes and asso-
ciated equations that are familiar to domain special-
ists. Table 2 presents some generic processes relevant
to aquatic ecosystems that might serve as such back-
ground knowledge. Unlike specific processes, they do
not commit to particular variables or parameter val-
ues, but they can indicate constraints on them. For
example, the process for exponential decay states that
its variable S must have type species and that its equa-
tions’ shared coefficient, a, must fall between 0 and 1.

2.2. The Task of Inductive Process Modeling

We maintain that scientists often construct specific
models (cast in their own notations) like that in Ta-
ble 1 from knowledge about generic processes like those
in Table 2. We can state this task of inductive process
modeling as:

¯ Given: Observations for a set of continuous vari-
ables as they vary over time;

¯ Given: Generic processes that specify causal rela-
tions among variables using conditional equations;

¯ Given: The names and types of observable and un-
observable variables to consider for incorporation;

¯ Find: A specific process model that explains the
observed data and predicts future data accurately.

Developing computational techniques that handle this
problem in a robust manner would constitute a signif-
icant advance in machine learning and provide many
benefits to the natural sciences and engineering.

1Here we assume that, when multiple active processes
influence the same variable, their effects are additive.
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Table 2. Five generic processes for aquatic ecosystems with
constraints on their variables and parameters.

generic process exponential_decay;
variables S { species } , D { detritus } ;
parameters a [0, 1];
equations d[S, t, 1] = -1 * a * S;

d[D, t, 1] = a * S;
generic process predation;

variables Sl {species}, S2{species}, D{ detritus} ;
parameters p [0, 11, 7 [0, 1];
equations d[S1, t, 1] = -), * p * S1;

d[D, t, 1] = (1 - 7) * P * S1;
diS2, t, 1] = -1 ̄  p ¯ S1;

generic process nutrient_uptake;
variables S { species } , N { nutrient ) 
parameters v [0, co], fl [0, 1],/2 [0, 1];
conditions N > T;
equations diS, t, 1] = # * S;

d[g,t, 1] = -1 ,fl.#. S;
generic process remineralization;

variables N { nutrient } , D {detritus } ;
parameters ~r [0, 1];
equations d[N, t, 1] = Ir ¯ D;

d[D, t, 1] = -1 * ~r * D;
generic process constant_inflow;

variables N { nutrient } ;
parameters ~ [0, 1];
equations diN, t, 1] = ~;

As noted in our earlier paper, this task differs from
those typically studied in machine learning. In partic-
ular, process models are designed to characterize the
behavior of dynamic systems with continuous variables
that change over time; thus, samples are not inde-
pendently and identically distributed, since those ob-
served later depend on those measured earlier. More-
over, process models are explanatory in nature, in that
processes themselves are not observable, multiple pro-
cesses can interact to produce complex behavior, and
the models can include theoretical variables that are
also unobservable. However, these complicating fac-
tors are partially offset by the assumption that the
dynamic systems are deterministic (although the ob-
servations themselves may contain noise), since scien-
tists often operate under this assumption.

We have also argued that existing methods for machine
learning and knowledge discovery do not solve the task
of inductive process modeling. For instance, although
methods for equation discovery generate knowledge in
formalisms familiar to scientists, they typically pro-
duce shallow descriptive summaries rather than expla-
nations in terms of underlying processes. Standard
methods for supervised learning, including algorithms
for inducing regression trees, neural networks, and
APAMA models, may produce accurate predictors but

make no contact with explanatory concepts familiar
to scientists. Techniques for explanation-based learn-
ing use background knowledge to account for obser-
vations, but they typically assume supervised training
cases and focus on classification or problem solving.

Another paradigm, Hidden Markov models, describes
systems that change over time and include unobserv-
able states, but typically only one state can be active
at a time, and they require explicit links that specify
state transitions. Dynamic Bayesian networks are sim-
ilar in spirit to sets of differential equations, but they
do not organize these equations into processes, and
they typically assume discrete variables. Moreover,
like hidden Markov models, they assume discrete time
steps and make probabilistic assumptions that are un-
necessary for many scientific models. The framework
of inductive logic programming comes closest to our
approach, in that it takes advantage of background
knowledge and its learned rules can contain explana-
tory theoretical symbols. However, its focus on classifi-
cation tasks and logical structures would require some
extension to handle our new class of models.

In summary, no existing learning paradigms seem ap-
propriate for the problem of inducing process models,
which indicates the need for new methods. However,
some of their responses to other induction tasks will
prove relevant to challenges that arise when learning
process models, as we will see later.

2.3. Review of Previous Results

In our earlier paper, we described IPM, an initial al-
gorithm that constructs a process model from known
generic processes and observed time-series data. The
method carries out constrained search through the
space of process models, operating in four stages:

1. Find all ways to instantiate the known generic pro-
cesses with specific variables. This involves finding,
for each generic process, every possible assignment
of variables to generic variables mentioned in the
process that satisfies the type constraints. This
gives a set of instantiated processes that specify
particular variables but lack parameter values. Be-
cause a model can refer to unobserved variables,
IPM also generates instantiated processes that in-
clude one or more such terms.

2. Combine subsets of these instantiated processes
into generic models, each of which specifies an ex-
planatory structure, much like a proof tree. These
models cannot map any specific variable onto more
than one generic variable in a process. IPM also
includes a parameter that specifies the maximum
number of processes allowed in a model.
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3. Transform each generic model into a specific model
by determining its parameters. To this end, IPM
invokes a gradient descent search through the space
of parameter values that attempts to minimize the
mean squared error over all observed variables.

4. Select the specific model (the generic model with
associated parameter values) that produces the
lowest mean squared error on the training data.

We did not intend this initial algorithm to be especially
efficient or robust, but we hoped it would show that
inductive process modeling was possible in principle.

We demonstrated IPM’s ability on synthetic data for
a known system, similar to that in Table 1, involving
four variables and six processes. To make these data
more realistic, we added five percent noise to each vari-
able. The induced model’s structure was very similar
to the target structure, its parameters were close to the
’true’ ones, and it reproduced the observed behavior
very well. These encouraging results suggested it was
reasonable to explore process model induction further.

3. Robust Induction of Process Models

Our previous paper defined the task of inductive pro-
cess modeling and presented an initial method, IPM,
that addresses this problem. However, we also iden-
tified a number of challenges that required additional
research. In this section, we describe three extensions
to IPM that respond directly to these problems, along
with an application to a real-world induction task.

We should also note two other changes in our current
implementation. First, IPM now requires the user to
specify explicitly the unobservable variables that can
appear in the induced model, which further constrains
the space of model structures. Second, the system now
uses a gradient-descent method developed by Saito and
Nakano (1997) to carry out a more efficient, second-
order search through the parameter space.

3.1. Dealing with Unobservable Variables

Note that the target model in Table 1 includes four
variables, but that only two of these - phyto and nitro
- are observable. The remainder - zoo and residue -
correspond to theoretical terms that are involved in the
system, but for which measurements are not available.
Our initial paper reported the induction of a model
with hidden variables, but these did not appear on the
left side of differential equations. The problem this
raises is that, to evaluate a process model on training
data, we must have initial values for each variable that
appears in such a role. But we do not know the initial
values for zoo and residue, since they are not observed.
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Figure 1. Observations (jagged lines) generated by the pro-
cess model in Table 1, with noise added, and predictions
(smooth lines) from the induced model. Concentrations for
nitro are multiplied by ten to display curves on same scale.

Our response is to treat the initial values of unobserved
variables as part of the induced model. We already
use a parameter optimization method to determine the
values for coefficients in models’ equations, and we can
utilize the same method to infer initial values. For a
candidate with the same model structure as in Table 1,
the need to select starting values for zoo and residue
adds two parameters to the optimization search.

To determine whether this approach works, we used
the target model to generate 20 sets of observations
for 100 time steps, using different initial values for all
four variables on each set. To make these data more
realistic, we added noise by replacing each value x with
x × (1 + r x 0.05), where we sampled r from a Gaus-
sian distribution with mean 0 and standard deviation
1. Figure 1 presents the time series that results from
one of these simulations. We then ran the parameter
optimization method on these training data, given the
same model structure as shown in the table.

The results suggested that we can indeed use parame-
ter optimization to handle model structures with un-
observable variables. In each run, this method found
values that were close to both the target coefficients
(the same across all runs) and the initial values (which
differed across runs). The mean difference between
the target and inferred values was 0.0064 4- 0.002 for
zoo, which ranged from 0.5 to 1, and 2.116 4- 0.650
for residue, which ranged from 0.1 to 10. The smooth
curves in Figure 1 show the predicted values for one
such model, which fit the observed values very well.
On average, the mean squared error was 46.76 4- 2.69
for phyto and 0.08594-0.0113 for nitro. This contrasted
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with 45.82 4- 2.64 for phyto and 0.0850 4- 0.0112 for ni-
tro on runs when the initial values for zoo and residue
were known to the system.

3.2. Finding Conditions on Processes

Recall that our definition of a quantitative process
model lets each process incorporate one or more con-
ditions, stated as thresholds on variables. The model
in Table 1 includes one such condition, which specifies
that, for nitro_uptake to be active, the variable nitro
must have a value greater than zero. The IPM algo-
rithm reported in our earlier paper could not deal with
such conditions, but we noted the need to extend the
method to induce models containing them.

For this problem, we assume that the generic process
specifies the basic form of the condition. For instance,
Table 2 states that the generic process nutrient_uptake
has one condition that involves a variable of type nu-
trient. Moreover, this variable must be greater than
some constant T, which must itself be more than zero.
Based on these assumptions, we can also treat in-
duction of conditions for a specific process, like ni-
tro_uptake, as a problem in parameter optimization.
We implemented this idea by recasting each condition
as a sigmoid function (with value 0 on one side of the
threshold and 1 on the other), then including the func-
tion as a multiplicative term in the process’ equations.

To evaluate this approach to condition finding, we
again generated 20 sets of time-series data for the
two observed variables, each involving 100 time steps.
However, in this study we held constant the initial val-
ues for all four variables and varied instead the nitro
threshold used to generate synthetic data, which again
contained five percent Gaussian noise. For each train-
ing set, we ran the parameter optimization method,
given the same model structure as shown in Table 1.

As before, the results were encouraging. In each run,
the system found a threshold for nitro that was close to
the value used to generate the data, with a mean differ-
ence of 0.0053 4- 0.0009 between the inferred threshold
and the target, which ranged from 0.1 to 1. The av-
erage root mean squared error for these models was
33.84 4- 0.007 on phyto and 0.176 4- 0.008 on nitro, as
compared with 34.13 4- 2.78 on phyto and 0.170 4- 0.033
on nitro when the condition was known at the outset.

3.3. Reducing Overfitting of Process Models

Both extensions described above involve determining
parameters for a given model structure, but a key ad-
vance over traditional system identification is that in-
ductive process modeling searches the space of such
structures. However, in our earlier paper, we noted

the IPM algorithm tended to construct models with
extra processes. These reduced error on the training
set only slightly, but they would probably increase er-
ror on new test cases. This problem is reminiscent of
early results with decision-tree induction, which overfit
training data by creating overly deep trees.

One countermeasure to overfitting in decision trees,
which we have adapted to inductive process model-
ing, attempts to minimize the complexity of the model
plus the complexity of the data not explained by that
model. We can encode this description length as

Md = (My + Me). log(n) + n. log(Me) 

where My is the number of variables, Me is the num-
ber of parameters (including ones for initial values
and conditions), n is the number of training cases,
and log(Me) is the number of bits needed to encode
the mean squared error. 2 This metric is a variant of
Schwartz’s (1978) Bayesian Information Criterion.

Rather than selecting the candidate model with the
lowest error, as did the original IPM algorithm, our
new method selects the model with the lowest descrip-
tion length Md. To demonstrate that this new metric
has the desired effect, we ran both systems on five syn-
thetic data sets generated from the ecosystem model in
Table 1. For each one, we reused a set of initial values
fi’om Section 3.1 to produce 100 observations for phyto
and nitro, then added five percent noise. We let both
versions of IPM consider models that included up to
six processes, with the only difference being the evalu-
ation function used to rank models. Starting from the
generic processes shown in Table 2, this led to 256 dis-
tinct model structures, each of which was transformed
into a specific model by fitting its parameter values.

As expected, the description length metric fared better
on these induction tasks than did the mean squared er-
ror metric. The _hQ criterion ranked the correct model
structure as best on all five data sets, whereas the
original scheme selected an incorrect complex model in
three out of five runs. These included the five processes
from the target model in Table 1 that generated the
time series, but they also contained one additional pro-
cess. In general, both criteria produced models that
matched the observed trajectories well, but the candi-
dates selected using the new criterion did this without
unnecessary processes. These results also suggest that
IPM can induce the correct model structure even when
it must infer initial values for unobserved variables.

We expected to observe an even greater difference be-
tween the two versions of IPM when we increased

2\Ve chose not to include terms for the number of equa-
tions or processes, although this would also be reasonable.
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Vt

Figure 2. A simple battery and associated variables.

the noise to ten percent. However, on these training
sets, the description length metric selected the correct
model structure on only two runs out of five, whereas
the error metric was right three times. The new sys-
tem’s errors involved not overly complex models, but
rather overly simple ones that omitted processes for
which it did not think there was sufficient evidence.
These results suggest that there remains some room
to improve our formulation of description length in
the context of inductive process modeling.

3.4. Inducing a Dynamic Battery Model

The experiments with synthetic data reported above
suggest that our approach to process model induc-
tion is promising, but results on a real data set would
strengthen our claims. Lacking sufficient time-series
data on aquatic ecosystems, we turned to another do-
main for which data were available - the behavior
of batteries on the International Space Station - and
which we have described elsewhere (Bay et al., 2002).
Batteries are not well understood and modeling their
behavior remains a challenging problem.

Figure 2 depicts a simple battery cast as an equiva-
lent electric circuit. Here Vcb stands for the voltage
of an ideal cell (the voltage source), Rs is the internal
resistance to current flow associated with a resistor,
Rp is the resistance to self discharge (degradation), 
is the current flowing into or out of battery, Vt is the
voltage at the battery’s terminals, and soc is the total
electric charge stored in the battery. Other prospec-
tive variables not shown in the figure are the battery’s
temperature and pressure.

The International Space Station has three battery
units, each of which contains two sets of 36 nickel-
hydrogen cells. We have telemetry data for these cells
over 24 hours, with samples about every ten seconds.
However, since only some cells have sensors, we aver-
aged readings from 36 cells to produce a single time
series for the current i and the voltage Vt at the termi-
nals. Even with averaging, these data are low quality,
with many missing values and occasional spikes. We

IObserved I

Predicted ........

I i i I

60000 65000 70000 75000 80000 85000

Time in seconds

Figure 3. Telemetry test data for the terminal voltage Vt.

used linear interpolation to infer missing values, but
we did not attempt to remove the spikes.

We provided IPM with generic processes for how Vcb
and Rs affect Vt when the battery is charging (i > 0)
and discharging (i < 0), as well as how i and Vcb pro-
duce changes in soc. In addition, we told the system
about three generic processes with algebraic equations
that involved a constant parameter, a linear relation,
and a quadratic function. Type constraints ensured
that only Vcb or Rs could occur on the left sides of
these equations and that only soc and temperature
could occur on the right sides. We based these pro-
cesses on available knowledge about batteries, such as
that soc affects Vcb in some manner (Chan & Sutanto,
2000), and that soc influences Rs, since it becomes
very hard to charge a battery when soc is high and
very hard to extract charge when it is low.

We divided the Space Station data into a training set
of 6,000 instances (not shown) and a test set of 2,640
cases (shown in Figure 3), then ran the extended IPM
algorithm on the former. We gave it the six generic
processes just described and let it consider models with
up to eight processes, with i, Vt, and temperature ob-
served and soc unobserved. The system generated 256
model structures and fit parameters to each candidate.
Table 3 shows the best model according to the Md met-
ric, which has six processes. These include charging,
discharging, and charge transfer, which are required to
predict Vt, but also a quadratic influence of soc on the
voltage Vcb, a linear influence of temperature on Vcb,
and a linear influence of soc on Rs. Nine other mod-
els had lower error on the training set, but additional
processes gave them a higher description length.

Because IPM induced this model from real telemetry
data, we cannot know whether its structure or param-
eters are correct. However, we can measure its pre-
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Table 3. Induced process model for Space Station batteries.

model Battery;
variables Rs, Vcb, soc, Vt, i, temperature;
observables soc, V t, i, temperature;
process voltage_charge;

conditions i > 0;
equations Vt = Vcb + 6.105 ̄  Rs * i;

process voltage_discharge;
conditions i < 0;
equations Vt = Vcb ̄  1.O/(Rs + 1.0);

process charge_transfer;
equations d[soc, t, 1] = i - Vcb/179.38;

process quadratic_influence_Vcb~soc;
equations Vcb = 41.32 * soc * soc;

process linear_influence_Vcb_temp;
equations Vcb = 0.2592 * temperature;

process linear dufluence_Rs_soc;
equations Rs = 0.03894 *soc;

dictive ability on the test set we reserved for this pur-
pose. Figure 3 shows that the model’s predictions for
Vt shadow the observations very closely, except for one
brief anomalous period. The mean squared test error
for Vt is 7.04, which is only one third the error pro-
duced by a model that has constant values for Vcb and
Rs. Moreover, it is nearly identical to the error (6.99)
reported in our earlier paper (Bay et al., 2002), which
used LAGRAMGE (Todorovski & D2eroski, 1997) 
find a simpler model.3 However, the current model is
more plausible in some ways; for example, it incorpo-
rates the notion that Rs increases with soc, which the
earlier one did not.

4. Related Work and Future Research

Despite its novelty, our approach to inductive process
modeling has many intellectual precursors. Although
early work on computational scientific discovery (e.g.,
Langley, 1981) dealt with induction of shallow empiri-
cal laws, it cast knowledge in established scientific for-
malisms and viewed the discovery problem in terms
of search. However, our approach has more in com-
mon with research by Todorovski and D~eroski (1997),
Bradley et al. (1999), and Koza et al. (2001), who 
bine ideas from artificial intelligence and system iden-
tification to induce the structure and parameters for
differential equation models. Our work extends theirs
by focusing on processes, which play a central role in
many sciences and provide a useful framework for en-
coding domain knowledge that constrains search.

3We should also mention that Bay et al.’s method con-
sidered 6859 model structures, because they included the
variable pressure, along with sigmoid functions and third-
degree polynomials, in the search space.

Our framework also builds on early research in qualita-
tive physics (e.g., Forbus, 1984), which was concerned
with simulation of behavior over time, but emphasized
qualitative reasoning about possible events rather than
deterministic simulation of quantitative models. There
are especially close connections with Farquhar’s (1994)
QPC system; which constructs models from a set of
qualitative process fragments. There has also been
research on induction of qualitative models fl’om time-
series data (e.g., Suc ~ Bratko, 2002), but this has not
used processes to group causal influences or to encode
domain knowledge for guiding model construction.

Finally, although we have distinguished our approach
from those taken in mainstream work on machine
learning, it retains many common ideas. Our view
of model construction as data-guided search through
a space of hypotheses follows an old tradition, and our
efforts to avoid overfitting incorporate ideas like min-
imizing description length, which has long been used
in other paradigms. However, our framework applies
these ideas in novel ways to support the induction of
quantitative process models from time-series data.

We hope to incorporate other ideas fl’om traditional
machine learning in our future research. For instance,
another response to over fitting would prune portions
of the process model after construction, much as estab-
lished methods prune induced decision trees. Ensem-
ble methods can also reduce variance, but we cannot
apply them directly if we want our process models to
remain comprehensible. However, we can adapt boot-
strap sampling (Efron & Tibshirani, 1993) to learn dis-
tinct process models from different training sets, each
produced from the original data by sampling with re-
placement, then retain only those processes that occur
in more than a specified fraction of the learned models.

We should also develop more flexible methods for in-
ducing conditions on processes. One approach would
utilize a greedy algorithm similar to that used to
find conditions in rule induction. For each process in
a model, this method would consider adding a sin-
gle condition that involves each possible variable, use
parametric search to determine the best threshold, and
select the condition that gives the best score. The
method would then continue the search, first consid-
ering more conditions on the current process and then
determining conditions for other processes.

A third important direction concerns increasing search
efficiency. Our current implementation of IPM con-
siders all model structures up to a specified size, but
clearly we should also examine heuristic methods that
search the model space more selectively. One approach
would start model construction from ’output’ variables
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and work backwards, first finding processes that ex-
plain their variations, then turning to inputs of those
processes, finding others that explain their behavior,
and continuing until forming a complete model. How-
ever, over 99 percent of our run times are due to the
gradient descent method for parameter fitting, so we
should also look into ways to make this more efficient.

5. Concluding Remarks

In this paper, we examined the problem of induc-
ing quantitative process models from time-series data.
This new paradigm holds special relevance for fields
that must construct models of complex systems with
interacting elements, but our initial work in the area
made some important simplifying assumptions. After
reviewing the IPM algorithm, we presented three ex-
tensions that let the method determine the initial val-
ues for unobserved variables, infer the thresholds on
numeric conditions, and minimize overfitting by tak-
ing into account model complexity.

In each case, we used studies on synthetic data to
demonstrate the extended method’s robust behavior.
These included tests of a description length metric’s
ability to determine the correct model structure in the
presence of noisy data, which produced mixed results.
Finally, we showed that our method produces accu-
rate and plausible models when applied to telemetry
data from batteries on the International Space Station.
Despite this encouraging progress, we also identified
some areas that require additional development, which
we~hope to explore in future papers on the promising
paradigm of inductive process modeling.
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