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Abstract

We propose probabilistic generative models, called parametric mix-
ture models (PMMs), for multiclass, multi-labeled text categoriza-
tion problem. Conventionally, the binary classification approach
has been employed, in which whether or not text belongs to a cat-
egory is judged by the binary classifier for every category. In con-
trast, our approach can simultaneously detect multiple categories of
text using PMMs. We derive efficient learning and prediction algo-
rithms for PMMs. We also empirically show that our method could
significantly outperform the conventional binary methods when ap-
plied to multi-labeled text categorization using real World Wide
Web pages.

1 Introduction

Recently, as the number of online documents has been rapidly increasing, auto-
matic text categorization is becoming a more important and fundamental task in
information retrieval and text mining. Since a document often belongs to multiple
categories, the task of text categorization is generally defined as assigning one or
more category labels to new text. This problem is more difficult than the traditional
pattern classification problems, in the sense that each sample is not assumed to be
classified into one of a number of predefined exclusive categories. When there are
L categories, the number of possible multi-labeled classes becomes 2L. Hence, this
type of categorization problem has become a challenging research theme in the field
of machine learning.

Conventionally, a binary classification approach has been used, in which the multi-
category detection problem is decomposed into independent binary classification
problems. This approach usually employs the state-of-the-art methods such as sup-
port vector machines (SVMs) [9][4] and naive Bayes (NB) classifiers [5][7]. However,
since the binary approach does not consider a generative model of multi-labeled text,
we think that it has an important limitation when applied to the multi-labeled text
categorization.

In this paper, using independent word-based representation, known as Bag-of-Words
(BOW) representation [3], we present two types of probabilistic generative models
for multi-labeled text called parametric mixture models (PMM1, PMM2), where
PMM2 is a more flexible version of PMM1. The basic assumption under PMMs is



that multi-labeled text has a mixture of characteristic words appearing in single-
labeled text that belong to each category of the multi-categories. This assumption
leads us to construct quite simple generative models with a good feature: the ob-
jective function of PMM1 is convex (i.e., the global optimum solution can be easily
found). We present efficient learning and prediction algorithms for PMMs. We also
show the actual benefits of PMMs through an application of WWW page catego-
rization, focusing on those from the “yahoo.com” domain.

2 Parametric Mixture Models

2.1 Multi-labeled Text

According to the BOW representation, which ignores the order of word occurrence
in a document, the nth document, dn, can be represented by a word-frequency
vector, xn = (xn

1 , . . . , xn
V ), where xn

i denotes the frequency of word wi occurrence
in dn among the vocabulary V =< w1, . . . , wV >. Here, V is the total number
of words in the vocabulary. Next, let yn = (yn

1 , . . . , yn
L) be a category vector for

dn, where yn
l takes a value of 1(0) when dn belongs (does not belong) to the lth

category. L is the total number of categories. Note that L categories are pre-defined
and that a document always belongs to at least one category (i.e.,

∑

l yl > 0).

In the case of multi-class and single-labeled text, it is natural that x in the lth cat-

egory should be generated from a multinomial distribution: P (x|l) ∝
∏V

i=1(θl,i)
xi

Here, θl,i ≥ 0 and
∑V

i=1 θl,i = 1. θl,i is a probability that the ith word wi appears
in a ducument belonging to the lth class. We generalize this to multi-class and
multi-labeled text as:

P (x|y) ∝

V
∏

i=1

(ϕi(y))
xi , where ϕi(y) ≥ 0 and

V
∑

i=1

ϕi(y) = 1. (1)

Here, ϕi(y) is a class-dependent probability that the ith word appears in a document
belonging to class y. Clearly, it is impractical to independently set a multinomial
parameter vector to each distinct y, since there are 2L − 1 possible classes. Thus,
we try to efficiently parameterize them.

2.2 PMM1

In general, words in a document belonging to a multi-category class can be regarded
as a mixture of characteristic words related to each of the categories. For example, a
document that belongs to both “sports” and “music” would consist of a mixture of
characteristic words mainly related to both categories. Let θl = (θl,1, . . . , θl,V ). The
above assumption indicates that ϕ(y)(= (ϕ1(y), . . . , ϕV (y))) can be represented by
the following parametric mixture:

ϕ(y) =

L
∑

l=1

hl(y)θl, where hl(y) = 0 for l such that yl = 0. (2)

Here, hl(y)(> 0) is a mixing proportion (
∑L

l=1 hl(y) = 1). Intuitively, hl(y) can
also be interpreted as the degree to which x has the lth category. Actually, by
experimental verification using about 3,000 real Web pages, we confirmed that the
above assumption was reasonable.

Based on the parametric mixture assumption, we can construct a simple parametric

mixture model, PMM1, in which the degree is uniform: hl(y) = yl/
∑L

l′=1 yl′ .
For example, in the case of L = 3, ϕ((1, 1, 0)) = (θ1 + θ2)/2 and ϕ((1, 1, 1)) =
(θ1 + θ2 + θ3)/3.



Substituting Eq. (2) into Eq. (1), PMM1 can be defined by

P (x|y,Θ) ∝

V
∏

i=1

(

∑L

l=1 ylθl,i
∑L

l′=1 yl′

)xi

. (3)

A set of unknown model paramters in PMM1 is Θ = {θl}
L
l=1.

Of course, multi-category text may sometimes be weighted more toward one cate-
gory than to the rest of the categories among multiple categories. However, being
averaged over all biases, they could be canceled and therefore PMM1 would be
reasonable. This motivates us to construct PMM1.

PMMs are different from usual distributional mixture models in the sense that the
mixing is performed in a parameter space, while the latter several distributional
components are mixed. Since the latter models assume that a sample is generated
from one component, they cannot represent “multiplicity.” On the other hand,
PMM1 can represent 2L − 1 multi-category classes with only L parameter vectors.

2.3 PMM2

In PMM1, shown in Eq. (2), ϕ(y) is approximated by {θl}, which can be regarded
as the “first-order” approximation. We consider the second order model, PMM2, as
a more flexible model, in which parameter vectors of duplicate-category, θl,m, are
also used to approximate ϕ(y).

ϕ(y) =

L
∑

l=1

L
∑

m=1

hl(y)hm(y)θl,m, where θl,m = αl,mθl + αm,lθm. (4)

Here, αl,m is a non-negative bias parameter satisfying αl,m + αm,l = 1, ∀l,m.
Clearly, αl,l = 0.5. For example, in the case of L = 3, ϕ((1, 1, 0)) = {(1+2α1,2)θ1+
(1+2α2,1)θ2}/4, ϕ((1, 1, 1)) = {(1+2(α1,2 +α1,3))θ1 +(1+2(α2,1 +α2,3))θ2 +(1+
2(α3,1 + α3,2))θ3}/9. In PMM2, unlike in PMM1, the category biases themselves
can be estimated from given training data.

Based on Eq. (4), PMM2 can be defined by

P (x|y; Θ) ∝

V
∏

i=1

{

∑L

l=1

∑L

m=1 ylymθl,m,i
∑L

l=1 yl

∑L

m=1 ym

}xi

(5)

A set of unknown parameters in PMM2 becomes Θ = {θl, αl,m}L,L
l=1,m=1.

2.4 Related Model

Very recently, as a more general probabilistic model for multi-latent-topics text,
called Latent Dirichlet Allocation (LDA), has been proposed [1]. However, LDA is
formulated in an “unsupervised” manner. Blei et al. also perform single-labeled text
categorization using LDA in which individual LDA is fitted to each class. Namely,
they do not explain how to model the observed class labels y in LDA.

In contrast, our PMMs can efficiently model class y, depending on other classes
through the common basis vectors. Moreover, based on the PMM assumtion, models
much simpler than LDA can be constructed as mentioned above. Moreover, unlike
in LDA, it is feasible to compute the objective functions for PMMs exactly as shown
below.

3 Learning & Prediction Algorithms

3.1 Objective functions

Let D = {(xn,yn)}N
n=1 denote the given training data (N labeled documents). The

unknown parameter Θ is estimated by maximizing posterior p(Θ|D). Assuming



that P (y) is independent of Θ, Θ̂map = arg maxΘ{log P (xn|yn,Θ) + log p(Θ)}.
Here, p(Θ) is prior over the parameters. We used the following conjugate priors

(Dirichlet distributions) over θl and αl,m as: p(Θ) ∝
∏L

l=1

∏V

i=1 θξ−1
l,i for PMM1

and p(Θ) ∝ (
∏L

l=1

∏V

i=1 θξ−1
l,i )(

∏L

l=1

∏L

m=1 αζ−1
l,m ) for PMM2. Here, ξ and ζ are

hyperparameters and in this paper we set ξ = 2 and ζ = 2, each of which is
equivalent to Laplace smoothing for θl,i and αl,m, respectively.

Consequently, the objective function to find Θ̂map is given by

J(Θ;D) = L(Θ;D) + (ξ − 1)
L
∑

l=1

V
∑

i=1

log θl,i + (ζ − 1)
L
∑

l=1

L
∑

m=1

log αl,m. (6)

Of course, the third term on the RHS of Eq. (6) is just ignored for PMM1. The
likelihood term, L, is given by

PMM1 : L(Θ;D) =
N
∑

n=1

V
∑

i=1

xn,i log
L
∑

l=1

hn
l θl,i, (7)

PMM2 : L(Θ;D) =
N
∑

n=1

V
∑

i=1

xn,i log
L
∑

l=1

L
∑

m=1

hn
l hn

mθl,m,i. (8)

Note that θl,m,i = αl,mθl,i + αm,lθm,i.

3.2 Update formulae

The optimization problem given by Eq. (6) cannot be solved analytically; therefore
some iterative method needs to be applied. Although the steepest ascend algorithms
involving Newton’s method are available, here we derive an efficient algorithm in a
similar manner to the EM algorithm [2]. First, we derive parameter update formulae
for PMM2 because they are more general than those for PMM1. We then explain
those for PMM1 as a special case.

Suppose that Θ(t) is obtained at step t. We then attmpt to derive Θ(t+1) by using
Θ(t). For convenience, we define gn

l,m,i and λl,m,i as follows.

gn
l,m,i(Θ) = hn

l hn
mθl,m,i

/

L
∑

l=1

L
∑

m=1

hn
l hn

mθl,m,i, (9)

λl,m,i(θl,m) = αl,mθl,i/θl,m,i, λm,l,i(θl,m) = αm,lθm,i/θl,m,i. (10)

Noting that
∑L

l=1

∑L

m=1 gn
l,m,i(Θ) = 1, L for PMM2 can be rewritten as

L(Θ;D) =
∑

n,i

xn,i{
∑

l,m

gn
l,m,i(Θ

(t))} log{(
hn

l hn
mθl,m,i

hn
l hn

mθl,m,i

)
∑

l′,m′

hn
l′h

n
m′θl′,m′,i}

=
∑

n,i

xn,i

∑

l,m

gn
l,m,i(Θ

(t)) log hn
l hn

mθn
l,m,i −

∑

n,i

xn,i

∑

l,m

gn
l,m,i(Θ

(t)) log gn
l,m,i(Θ).(11)

Moreover, noting that λl,m,i(θl,m) + λm,l,i(θl,m) = 1, we rewrite the first term on
the RHS of Eq. (11) as

∑

n,i

xn,i

∑

l,m

gn
l,m,i(Θ

(t))
[

λl,m,i(θ
(t)
l,m) log{(

αl,mθl,i

αl,mθl,i

)hn
l hn

mθl,m,i}

+λm,l,i(θ
(t)
l,m) log{(

αm,lθm,i

αm,lθm,i

)hn
l hn

mθl,m,i}
]

. (12)



From Eqs.(11) and (12), we obtain the following important equation:

L(Θ;D) = U(Θ|Θ(t)) − T (Θ|Θ(t)). (13)

Here, U and T are defined by

U(Θ|Θ(t)) =
∑

n,i,l,m

xn,i gn
l,m,i(Θ

(t))
{

λl,m,i(θ
(t)
l,m) log hn

l hn
mαl,mθl,i

+λm,l,i(θ
(t)
l,m) log hn

l hn
mαm,lθm,i

}

, (14)

T (Θ|Θ(t)) =
∑

n,i,l,m

xn,i gn
l,m,i(Θ

(t))
{

log gn
l,m,i(Θ) + λl,m,i(θ

(t)
l,m) log λl,m,i(θl,m)

+λm,l,i(θ
(t)
l,m) log λm,l,i(θl,m)

}

. (15)

From Jensen’s inequality, T (Θ|Θ(t)) ≤ T (Θ(t)|Θ(t)) holds. Thus we just maximize
U(Θ|Θ(t))+log P (Θ) w.r.t. Θ to derive the parameter update formula. Noting that
θl,m,i ≡ θm,l,i and qn

l,m,i ≡ qn
m,l,i, we can derive the following formulae:

θ
(t+1)
l,i =

2
∑N

n=1 xn
i

∑L

m=1 qn
l,m,i(Θ

(t))λl,m,i(Θ
(t)) + ξ − 1

2
∑V

i=1

∑N

n=1 xn
i

∑L

m=1 qn
l,m,i(Θ

(t))λl,m,i(Θ(t)) + V (ξ − 1)
, ∀l, i, (16)

α
(t+1)
l,m =

∑N

n=1

∑V

i=1 xn
i qn

l,m,i(Θ
(t))λl,m,i(Θ

(t)) + (ζ − 1)/2
∑V

i=1

∑N

n=1 xn
i qn

l,m,i(Θ
(t)) + ζ − 1

, ∀l,m 6= l. (17)

These parameter updates always converge to a local optimum of J given by Eq. (6).

In PMM1, since unknown parameter is just {θl}, by modifying Eq. (9) as

gn
l,i(Θ) =

hn
l θl,i

∑L

l=1 hn
l θl,i

, (18)

and rewriting Eq. (7) in a similar manner, we obtain

L(Θ;D) =
∑

n,i

xn,i

∑

l

gn
l,i(Θ

(t)) log hn
l θl,i −

∑

n,i

xn,i

∑

l

gn
l,i(Θ

(t)) log gn
l,i(Θ). (19)

In this case, U becomes a simpler form as

U(Θ|Θ(t)) =
N
∑

n=1

V
∑

i=1

xn,i

L
∑

l=1

gn
l,i(Θ

(t)) log hn
l θl,i. (20)

Therefore, maximizing U(Θ|Θ(t))+(ξ − 1)
∑L

l=1

∑V

i=1 log θl,i w.r.t. Θ under the
constraint

∑

i θl,i = 1, ∀l, we can obtain the following update formula for PMM1:

θ
(t+1)
li =

∑N

n=1 xn,ig
n
l,i(Θ

(t)) + ξ − 1
∑V

i=1

∑N

n=1 xn,ign
l,i(Θ

(t)) + V (ξ − 1)
, ∀l, i. (21)

Remark: The parameter update given by Eq. (21) of PMM1 always converges to
the global optimum solution.

Proof: The Hessian matrix, H, of the objective function, J , of PMM1 becomes

H = ΦT ∂2J(Θ;D)

∂Θ∂ΘT
Φ =

d2J(Θ + κΦ;D)

dκ2

∣

∣

∣

∣

κ=0

= −
∑

n,i

xn
i

(∑

l h
n
i φli

∑

l h
n
i θli

)2

− (ξ − 1)
∑

l,i

(

φli

θli

)2

. (22)



Here, Φ is an arbitrary vector in the Θ space. Noting that xn
i ≥ 0, ξ > 1 and Φ 6= 0,

H is negative definite; therefore J is a strictly convex function of Θ. Moreover, since
the feasible region defined by J and constraints

∑

i θl,1 = 1, ∀l is a convex set,
the maximization problem here becomes a convex programming problem and has
a unique global solution. Since Eq. (21) always increases J at each iteration, the
learning algorithm given above always converges to the global optimum solution,
irrespective of any initial parameter value.

3.3 Prediction

Let Θ̂ denote the estimated parameter. Then, applying Bayes’ rule, the op-
timum category vector y∗ for x∗ of a new document is defined as: y∗ =
arg maxy P (y|x∗; Θ̂) under a uniform class prior assumption. Since this maxi-
mization problem belongs to the zero-one integer problem (i.e., NP-hard problem),
an exhaustive search is prohibitive for a large L. Therefore, we solve this problem
approximately with the help of the following greedy-search algorithm. That is, first,
only one yl1 value is set to 1 so that P (y|x∗; Θ̂) is maximized. Then, for the re-

maining elements, only one yl2 value, which mostly increases P (y|x∗; Θ̂), is set to 1

under a fixed yl1 value. This procedure is repeated until P (y|x∗; Θ̂) cannot increase
any further. This algorithm successively determines an element in y to increase the
posterior probability until its value does not improve. This is very efficient because
it requires the calculation of the posterior probability at most L(L + 1)/2 times,
while the exhaustive search needs 2L − 1 times.

4 Experiments

4.1 Automatic Web Page Categorization

We tried to categorize real Web pages linked from the “yahoo.com” domain1. More
specifically, Yahoo consists of 14 top-level categories (i.e., “Arts & Humanities,”
“Business & Economy,” “Computers & Internet,” and so on), and each category is
classified into a number of second-level subcategories. By focusing on the second-
level categories, we can make 14 independent text categorization problems. We used
11 of these 14 problems2. In those 11 problems, mininum (maximum) values of L
and V were 21 (40) and 21924 (52350), respectively. About 30∼45% of the pages
are multi-labeled over the 11 problems. To collect a set of related Web pages for
each problem, we used a software robot called ”GNU Wget (version 1.5.3). A text
multi-label can be obtained by following its hyperlinks in reverse toward the page
of origin.

We compared our PMMs with the convetional methods: naive Bayes (NB), SVM,
k-nearest neighbor (kNN), and three-layer neural networks (NN). We used linear
SVMlight (version 4.0), tuning the C (penalty cost) and J (cost-factor for negative
and positive samples) parameters for each binary classification to improve the SVM
results [6]3. In addition, it is worth mentioning that when performing the SVM,

each xn was normalized to be
∑V

i=1 xn
i = 1 because discrimination is much easier

in the V −1-dimensional simplex than in the original V dimensional space. In other
words, classification is generally not determined by the number of words on the
page; actually, normalization could also significantly improve the performance.

1This domain is a famous portal site and most related pages linked from the domain
are registered by site recommendation and therefore category labels would be reliable.

2We could not collect enough pages for three categories due to our communication
network security. However, we believe that 11 independent problems are sufficient for
evaluating our method.

3Since the ratio of the number of positive samples to negative samples per category
was quite small in our web pages, SVM without the J option provided poor results.



Table 1: Performance for 3000 test data using 2000 training data.
No. NB SVM kNN NN PMM1 PMM2
1 41.6 (1.9) 47.1 (0.3) 40.0 (1.1) 43.3 (0.2) 50.6 (1.0) 48.6 (1.0)
2 75.0 (0.6) 74.5 (0.8) 78.4 (0.4) 77.4 (0.5) 75.5 (0.9) 72.1 (1.2)
3 56.5 (1.3) 56.2 (1.1) 51.1 (0.8) 53.8 (1.3) 61.0 (0.4) 59.9 (0.6)
4 39.3 (1.0) 47.8 (0.8) 42.9 (0.9) 44.1 (1.0) 51.3 (2.8) 48.3 (0.5)
5 54.5 (0.8) 56.9 (0.5) 47.6 (1.0) 54.9 (0.5) 59.7 (0.4) 58.4 (0.6)
6 66.4 (0.8) 67.1 (0.3) 60.4 (0.5) 66.0 (0.4) 66.2 (0.5) 65.1 (0.3)
7 51.8 (0.8) 52.1 (0.8) 44.4 (1.1) 49.6 (1.3) 55.2 (0.5) 52.4 (0.6)
8 52.6 (1.1) 55.4 (0.6) 53.3 (0.5) 55.0 (1.1) 61.1 (1.4) 60.1 (1.2)
9 42.4 (0.9) 49.2 (0.7) 43.9 (0.6) 45.8 (1.3) 51.4 (0.7) 49.9 (0.8)
10 41.7 (10.7) 65.0 (1.1) 59.5 (0.9) 62.2 (2.3) 62.0 (5.1) 56.4 (6.3)
11 47.2 (0.9) 51.4 (0.6) 46.4 (1.2) 50.5 (0.4) 54.2 (0.2) 52.5 (0.7)

We employed the cosine similarity for kNN method (see [8] for more details). As for
NNs, an NN consists of V input units and L output units for estimating a category
vector from each frequency vector. We used 50 hidden units. An NN was trained
to maximize the sum of cross-entropy functions for target and estimated category
vectors of training samples, together with a regularization term consisting of a sum
of squared NN weights. Note that we did not perform any feature transformations
such as TFIDF (for an example, see e.g., [8]) because we wanted to evaluate the
basic performance of each detection method purely.

We used the F-measure as the performance measure which is defined as the weighted
harmonic average of two well-known statistics: precision, P , and recall, R. Let
yn = (yn

1 , . . . , yn
L) and ŷ

n = (ŷn
1 , . . . , ŷn

L) be actual and predicted category vec-
tors for xn, respectively. Subsequently, the Fn = 2PnRn/(Pn + Rn), where

Pn =
∑L

l=1 yn
l ŷn

l /
∑L

l=1 ŷn
l and Rn =

∑L

l=1 yn
l ŷn

l /
∑L

l=1 yn
l . We evaluated the per-

formance by F̄ = 1
3000

∑3000
n=1 Fn using 3000 test data independent of the training

data. Although micro- and macro-averages can be used, we think that the sample-
based F -measure is the most suitable for evaluating the generalization performance,
since it is natural to consider the i.i.d. assumption for documents.

4.2 Results

For each of the 11 problems, we used five pairs of training and test data sets. In
Table 1 (Table 2) we compared the mean of the F̄ values over five trials by using
2000 (500) training documents. Each number in parenthesis in the Tables denotes
the standard deviation of the five trials. PMMs took about five minutes for training
(2000 data) and only about one minute for the test (3000 data) on 2.0-Ghz Pentium
PC, averaged over the 11 problmes. The PMMs were much faster than the k-NN
and NN. In the binary approach, SVMs with optimally tuned parameters produced
rather better results than the NB method. The performance by SVMs, however,
was inferior to those by PMMs in almost all problems. These experimental results
support the importance of considering generative models of multi-category text.

When the training sample size was 2000, kNN provided comparable results to the
NB method. On the other hand, when the training sample size was 500, the kNN
method obtained results similar to or slightly better than those of SVM. However,
in both cases, PMMs significantly outperformed kNN. We think that the memory-
based approach is limited in its generalization ability for multi-labeled text catego-
rization.

The results of well-regularized NN were fair, although it took an intolerable amount
of training time, indicating that flexible discrimination would not be necessary for



Table 2: Performance for 3000 test data using 500 training data.
No. NB SVM kNN NN PMM1 PMM2
1 21.2 (1.0) 32.5 (0.5) 34.7 (0.4) 33.8 (0.4) 43.9 (1.0) 43.2 (0.8)
2 73.9 (0.7) 73.8 (1.2) 75.6 (0.6) 74.8 (0.9) 75.2 (0.4) 69.7 (8.9)
3 46.1 (2.9) 44.9 (1.9) 44.1 (1.2) 45.1 (1.0) 56.4 (0.3) 55.4 (0.5)
4 15.2 (0.9) 33.6 (0.5) 37.1 (1.0) 33.8 (1.1) 41.8 (1.2) 41.9 (0.7)
5 34.1 (1.6) 42.7 (1.3) 43.9 (1.0) 45.3 (0.9) 53.0 (0.3) 53.1 (0.6)
6 50.2 (0.3) 56.0 (1.0) 54.4 (0.9) 57.2 (0.7) 58.9 (0.9) 59.4 (1.0)
7 22.1 (0.8) 32.1 (0.5) 37.4 (1.1) 33.9 (0.8) 46.5 (1.3) 45.5 (0.9)
8 32.7 (4.4) 38.8 (0.6) 48.1 (1.3) 43.1 (1.0) 54.1 (1.5) 53.5 (1.5)
9 17.6 (1.6) 32.5 (1.0) 35.3 (0.4) 31.6 (1.7) 40.3 (0.7) 41.0 (0.5)
10 40.6 (12.3) 55.0 (1.1) 53.7 (0.6) 55.8 (4.0) 57.8 (6.5) 57.9 (5.9)
11 34.2 (2.2) 38.3 (4.7) 40.2 (0.7) 40.9 (1.2) 49.7 (0.9) 49.0 (0.5)

discriminating high-dimensional, sparse-text data. The results obtained by PMM1
were better than those by PMM2, which indicates that a model with a fixed αl,m =
0.5 seems sufficient, at least for the WWW pages used in the experiments.

5 Concluding Remarks

We have proposed new types of mixture models (PMMs) for multi-labeled text
categorization, and also efficient algorithms for both learning and prediction. We
have taken some important steps along the path, and we are encouraged by our
current results using real World Wide Web pages. Moreover, we have confirmed
that studying the generative model for multi-labeled text is beneficial in improving
the performance.
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