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ABSTRACT

In this paper, we address the problem of detecting multiple
topics or categories of text where each text is not assumed
to belong to one of a number of mutually ezclusive cate-
gories. Conventionally, the binary classification approach
has been employed, in which whether or not text belongs to
a category is judged by the binary classifier for every cat-
egory. In this paper, we propose a more sophisticated ap-
proach to simultaneously detect multiple categories of text
using parametric mizture models (PMMs), newly presented
in this paper. PMMs are probabilistic generative models
for text that has multiple categories. Our PMMs are es-
sentially different from the conventional mixture of multi-
nomial distributions in the sense that in the former several
basis multinomial parameters are mixed in the parameter
space, while in the latter several multinomial components
are mixed. We derive efficient learning algorithms for PMMs
within the framework of the maximum a posteriori estimate.
We also empirically show that our method can outperform
the conventional binary approach when applied to multi-
topic detection of World Wide Web pages, focusing on those
from the “yahoo.com” domain.

1. INTRODUCTION

As a large quantity of text is being stored in the World
Wide Web, electric mail, digital libraries, and so on, auto-
matic text categorization is becoming a more important and
fundamental task in information retrieval and text mining.
In particular, since a document usually consists of several
topics, detecting multi-topic or multi-category of text is of
great practical value. Hence, this type of detection prob-
lem has become a challenging research theme in the field of
machine learning.

This detection problem is different from the traditional pat-
tern classification problems such as character recognition
and speech recognition in the sense that each sample is not
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assumed to be classified into one of a number of prede-
fined ezclusive categories. For the multi-category detection
problem, conventionally, a binary classification approach has
been utilized along with state-of-the-art methods such as
support vector machines (SVMs) [15][6] and naive Bayes
(NB) classifiers [8][10]. In this approach, the multi-category
detection problem is decomposed into separate binary clas-
sification problems. It has been reported that SVM can
provide good results for general problems including the text
categorization. However, we think that it has an impor-
tant limitation when applied to the multi-category detection
problem because it does not consider an intrinstic nature,
i.e., a generative model of multi-category text.

In this paper, we present a novel single-shot approach for the
multi-category detection problem using probabilistic genera-
tive models, newly proposed in this paper. One might think
that the conventional mixture models including a mixture of
naive Bayes model [12] would be suitable for this purpose.
Unfortunately, however, they are inappropriate for multi-
category text modeling because in distributional mixture
models, a sample is assumed to be probabilistically gen-
erated from one of the component distributions. In other
words, the conventional distributional mixture models are
useful for hierarchical or tree-structured category representa-
tion, but are not appropriate for multi- or network-structured
category representaion.

In contrast, in this paper, we first propose a new type of
mixture model, called a parametric mixture model: PMM-I
and PMM-II. (PMM-II is a more sophisticated version of
PMM-I.) Like the naive Bayes model [8][10], PMMs also
employ independent word-based representation, known as
“bag-of-words (BOW)” representation, which ignores the or-
der of the word occurrence in a document. More specifically,
based on the BOW, the word-frequency distribution over
the vocaburary is formulated not as a mixture of multino-
mial distributions, but as a single multinomial model. How-
ever, a parameter vector of a single multimomial distribution
is formulated by a mixture of basis multinomial parameter
vectors, and each of the basis vectors corresponds to the
parameter vector of a multinomial distribtution for a single-
category text.

2. PARAMETRIC MIXTURE MODELS

A document, d"™, can be represented as a word-frequency
vector, " = (z7,...,zy ), where x7 denotes frequency of
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Figure 1: Relationship between word-frequency distribution and multinomial parameter vectors.

word w; occurrence in d" among the vocabulary V =<
wi,...,wy >. Here, V is the total number of words in
the vocabulary. Thus, in the BOW, each x is a point in V-
dimensional Euclidean space and @ is assumed to be gener-
ated by a multinomial distribution over the words: p(x;8)
sz:1 07%, where 8 = (61, ...,0v) is a model parameter vec-
tor and the ith element 6; denotes a probability that w;
appears and therefore 6; > 0 and Zyzl 0; = 1. We define a
category vector y" = (y7,...,yt) for d", where y* takes a
value of 1(0) when d" belongs (does not belong) to the Ith
category. Here, L is the total number of categories and L
categories are assumed to be known. Note that we assume
that at least one component in y™ takes a value of 1.

Now, let us consider how word-frequency vectors of multi-
category text are distributed. As a simple example, sup-
pose that we have two multinomial distributions M; and
M for category C: and C3, each of which are specified by
@(C1) = (0.7,0.1,0.2) and ¢(C2) = (0.1,0.7,0.2), respec-
tively. This corresponds to the case where (L, V) = (2, 3).
Figure 1(a) shows samples {x"} denoted by '0’(’+’) which
are artificially generated by ¢(C1) (¢(C2)). The sum of el-
ements of each frequency vector are distributed from about
100 to 800. Clearly, a parameter vector ¢ lies on a two-
dimensional simplex (ie., 61 + 62 + 03 = 1), shown as a large
triangle in Figure 1(c).

Let C'1,2 denote a multi-category class which belongs to both
C; and Cs. Then, it may be assumed that text belonging to
C1,2 has words related to C and C». For example, it seems
reasonable to assume that a document having two topics
such as “sports” and “music” would consist of a mixture of
characteristic words related to both topics, where the mixing
weight values between these two categories would not always
be equal (i.e., 0.5).

According to the above idea, we generated Ci,2 samples,
denoted by A’ in Figure 1(b), by computing the weighted
sum of two arbitrarily selected word-frequency vectors each
of which belongs to C1 and C3, respectively. One can see
that samples in C' 2 are distributed between C and Cs sam-
ples. The important point to note is that these samples in
C1,2 can never be generated by a mixture of two multinomial
distributions M and M.

Clearly, the maximum likelihood estimate of ¢(Cy) is pro-

portional to Zmeck x, for k = 1 and 2. Thus, from the
above generative process of C1,2 samples, one can easily see
that a multinomial parameter vector of the C 2 class, de-
noted by ¢(Ch,2), can be approximated by a linear combi-
nation of ¢(C1) and ¢(C2):

P(Cr2) ~ ap(Ch) + (1 — a)p(C2), (1)

where 0 < o < 1 is a mixing weight. Actually, ¢(C1,2) in
Figure 1(c) is the maximum likelihood estimate computed
by using C1 2 samples.

Generalizing the above idea, we can say that the distribution
of word-frequency vectors of multi-category text is a multi-
nomial distribution with a parameter vector generated by a
mixture of basis parameter vectors, and each basis vector
corresponds to a multinomial distribution of a single cate-
gory. Since in our approach, unlike in the conventional dis-
tributional mixture models, the mixing is performed in the
parameter space, we call this a “parametric mixture model”
in this paper.
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As mentioned above, multi-category text may sometimes be
more weighted to one category than to the rest of the cate-
gories among multicategories. However, being averaged over
all biases, they could be canceled and therefore o = 0.5 in
Eq. (1) may be reasonable. This motivates us to construct a
model called “Parametric Mixture Model Type I: PMM-I”.

More generally, a given multi-category text is specified by a
single category vector y, and its multinomial parameter can
be represented by

S
ely) = ST (2)
D Y
where 6; = (611,...,0v) is a multinomial parameter vec-

tor’of the category Cj.

Thus, the generative model of PMM-I is represented by
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1t should be written ©(Cp), but to make notation simple we use
0, instead of ¢(Cj) hereafter.




where ;(y) denotes the ith element in ¢(y). Note that
Z:;l ©i(y) = 1 holds. In PMM-I, a set of unknown model
parameters is © = {0;; | =1,...,L}.

2.2 PMM-II

We also present “Parametric Mixture Model Type II: PMM-
II” as a variant, in which « in Eq. (1) also becomes a free
parameter. This model is for use in case where the bias
weights mentioned above cannot be ignored. In PMM-II a
multinomial parameter vector given y is defined by
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e(y) = (4)
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where 0;m = a1,m01 + @m,10m. a;m(> 0) is a mixing pa-
rameter that satisfies oy m + am,; = 1, VI,m. Note that

0., = 0, because a;,; = 0.5. Moreover, 0;,, = 0, holds.
Eq. (4) is well defined so that when sum of all elements in
y is 1 (i.e., multi-category case), ¢(y) cannot coincide with
a single-category basis vector ¢(C}) even if the mixing pa-
rameter value is set to 0 or 1. According to Eq. (4), the
generative model of PMM-II is given by

w|y H Zl 1 m= 1ylym0lmz 1. (5)
i=1 Zz lylzm 1 Ym

where 01 m,; = 0,mbii + am,10mi. In PMM-II, a set of un-
known model parameters is © = {0;, ay,m; I =1,...,L, m =
., L}.

3. LEARNING AND PREDICTION

3.1 Learning algorithms

Let D = {z",y"™; n=1,..., N} denote the given traning
data. Then, the estimate of model parameter vector © is
derived by finding the maximum a posteriori estimate:

Omap = argmax P(0|D)
© N

= arg mg,x{z log P(x

"ly™, ©) + log p(©)}. (6)

This maximization can be solved within the framework of
the penalized EM algorithm [3] as shown later.

Each prior distribution over parameter 8; and oy, is rep-
resented by Dirichlet distributions.
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& and ( are hyperparameters and in this paper we set £ = 2
and ¢ = 2, which is equivalent to Laplace smoothing for 6;;
and oy, respectively.

3.1.1 Learnng algorithmfor PMM-I
According to Eq. (6), the objective function for PMM-I is

LOD)+(E-1))
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J(©;D) = log 01:. (8)

where £(0; D) is the log-likelihood term and is given by

L(©;D) = Z Z z log Z hi'6s;. (9)

n=1 i=1

Here, we set hj' = y7'/ >.1,_ y#. Let ©® be a parameter
estimate at step t. Moreover setting

n
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I ’
21 hibus

and noting that Zlel 913(®) = 1, we rewrite Eq. (9) as
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where F(0]|0") and S(6|0™") are defined as follows:
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Noting that S(O|0") <
inequality, if ,7-‘((—)|@(t)) > F
£(®(t);D) from Eq. (11).

S(©®|0W) holds from Jensen’s
FOW|O®) then L£(O;D) >

Therefore, by maximizing F(0]0")+(¢-1) 31, SV log 6y
with respect to ©, we can increase J(©;D) monotomcally
on any iteration of parameter update from 0 to ©:

Forl=1,...,L, i=1,...,V,
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Here gj; is given by Eq. (10). It is worth mentioning that per-
forming this parameter update, the algorithm always con-
verges to the global optimum of J(©;D) since the Hessian
matrix of the objective function is negative definite.

3.1.2 Learning algorithmfor PMM-II
The objective function for PMM-II becomes

= L(O;D)+(E=1) ) logbri+(¢—1) ) logaim.
lym
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Here, the log-likelihood term is given by

N Vv L L
= Z Z xl logz Z hi hem O1,m i (13)
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Using a similar method to that for PMM-I, we can obtain
the following parameter update formulae for 6;; and oym.
The results are given below:

Forl=1,...,L, i=1,...,V,
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Table 1: Summary of Detection Problems
Problem Name \% L PMC ANW
Arts & Humanities 23146 26 44.4% 111.1
Business & Economy 21924 30 424% 102.1

Computers & Internet 34096 33 30.2%  128.2
Education 27534 33 33.1% 111.8
Entertainment 32001 21 27.7%  145.7
Health 30605 32 46.8% 108.8
Recreation & Sports 30324 22 30.8% 129.9
Reference 39679 33 14.5%  163.7
Science 37187 40 32.0% 173.3
Social & Science 52350 39 21.6% 154.4
Society & Culture 31802 27 40.4% 176.2

Forl=1,...,L, m=1,...,L,
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Here, q{fmﬂ-(@) and A;m,;(©) are defined by
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Note that Ajm,i + Am,1,i =1 and ¢, ; = ¢, 1,; hold.

3.2 Prediction algorithm

Let © denote the estimated parameter. ‘Then, applying
Bayes’ rule, the optimum category vector y* for =* of a
new sample is defined as: y* = arg maxy P(y|a:*;é) under
a uniform class prior assumption. This maximization prob-
lem belongs to the zero-one integer problem (i.e.,, NP-hard
problem). Clearly, an exhaustive search is prohibitive for a
large L. To solve this problem, we utilize a simple heuristic
greedy-search algorithm. That is, first, only one y;, value
is set to 1 so that P(y|z*;©) is maximized. Then, for the
rest elements, only one y;, value is set to 1 with y;, is fixed.
This procedure is repeated until P(y|a*; ©) cannot increase.
Namely, this algorithm successively determines an element
in y so as to improve the posterior probability until its value
does not improve. This algorithm is of great efficiency be-
cause it requires the calculation of the posterior probability
at most L(L+1)/2 times, while the exhaustive search needs
2L — 1 times.

4. APPLICATION
4.1 Multi-topic detectionof WWW pages

We designed a series of problems for detecting multiple top-
ics of World Wide Web pages. We focused on the “ya-
hoo.com” domain to collect Web pages because this do-
main is a famous portal site and most related pages linked
from this domain are registered by site recommendation and
therefore links may be reliable. Yahoo consists of 14 top-
level categories and each of these categories is classified into
a number of second-level subcategories. We formalized a
multi-category detection problem by regarding each list of
the second-level subcategories as categories to be detected.

Thus, we can obtain 14 independent multi-category detec-
tion problems?.

To collect a set of related Web pages for each problem, we
ran a software robot called ” GNU Wget (version 1.5.3)%"
14 times by designating each of the pages linked from the
14 top-level categories as an origin page, where hyperlinks
of each page were recursively followed until depth five from
each origin page. However, unfortunately for “News & Me-
dia”, “Government”, and “Regional”, we could not collect
enough number of pages due to problems caused by our com-
munication network security. Thus, we excluded these three
problems and the remaining eleven problems shown in Ta-
ble 1 were used in our experiments®. Note that these 11
problems were solved independently.

Table 1 shows the statistics of our detection problems. V'
is the total number of different words in the vocabulary,
L is the number of categories, PMC is the percentage of
the number of samples that belong to more than a single
category, and ANW denotes the averaged number of words
used in a page. Clearly, each of the collected WWW pages
is represented as a very high dimensional word-frequency
vector, but uses at most a few hundreds of words on average.

We compared our PMMs with the convetional methods:
naive Bayes (NB), SVM, k-nearest neighbor (kNN), and
three-layer neural networks (NN). We used linear SVMlight
(version 4.0) [7] with tuning the C (penalty cost) and J
(cost-factor for negative and positive samples) parameters
for each binary classification to improve the SVM results. .J
was set to |s?]/|si| for every category as suggested in [11].
When performing the SVM, each word-frequency vector =™
was normalized to be ). x7 = 1.

We employed the cosine similarity for kNN method (see [14]
for more details). We tried k = 1,...,15 and selected the
best one for test samples to evaluate its potential perfor-
mance, although it is clearly unfair advantage. As for NN,
an NN consists of V' input units and L output units for es-
timating a category vector from each frequency vector. We
used 50 hidden units. An NN was trained so as to maximize
a sum of cross-entropy functions [1] for target and estimated
category vectors of training samples, together with a regu-
larization term consisting of a sum of squared NN weights.

4.2 PerformanceMeasures

In the case of the multi-category detection problem, the
standard accuracy measure is inappropriate because a high
accuracy can be achieved by always predicting negative (0)
values. We used the F-measure as the performance mea-
sure instead [9]. The F-measure is defined as the weighted
harmonic average of two well-known statistics, precision, P,
and recall, R, widely used in information retrieval.

20f course, it may be natural to consider a 14 top-category
detection problem. However, in this case since the number
of categories seems small (just 14) and only one set detection
problem can be obtained, we used second-level categories.
30ne can download from “ftp://ftp.gnu.org/pub/gnu/wget”.
4Note that since our data collection was performed during early
2001, the second-level subcategories used in our experiments are
slightly different from the current ones.



Table 2: Detection performance for test samples using 2,000 training samples.

Problem Name NB SVM kNN NN PMM1 PMM2

Arts&Humanitics 116 (1L.9) 47.1 (0.3) 400 (L.1) 433 (0.2) 50.6 (1.0) 48.6 (L.0)
Business&Economy ~ 75.0 (0.6) 745 (0.8) 78.4 (0.4) 77.4 (0.5) 755 (0.9) 721 (1.2)
Computers&Internet  56.5 (1.3) 56.2 (1.1) 51.1 (0.8) 53.8 (1.3) 61.0 (0.4) 59.9 (0.6)
Education 39.3 (1.0) 47.8 (0.8) 429 (0.9) 44.1 (1.0) 51.3 (2.8) 48.3 (0.5)
Entertainment 545 (0.8) 56.9 (0.5) 47.6 (1.0) 549 (0.5) 59.7 (0.4) 58.4 (0.6)
Health 664 (0.8) 67.1 (0.3) 60.4 (0.5) 66.0 (0.4) 66.2 (0.5 651 (0.3)
Recreation 51.8 (0.8) 521 (0.8) 44.4 (1.1) 496 (1.3) 55.2 (0.5) 52.4 (0.6)
Reference 52.6 (L1) 554 (0.6) 53.3 (0.5) 550 (1.1) 61.1 (1.4) 60.1 (1.2)
Science 42.4 (0.9) 49.2 (0.7) 43.9 (0.6) 458 (L.3) 51.4 (0.7) 49.9 (0.8)
Social&Science 41.7 (10.7) 65.0 (1.1) 59.5 (0.9) 62.2 (2.3) 62.0 (5.1) 56.4 (6.3)
Society&Culture 472 (0.9) 514 (0.6) 464 (1.2) 505 (0.4) 54.2 (0.2) 525 (0.7)

Let y"™ = (y7,...,y7) and g™ = (97,...,97) be an actual

and predicted category vectors for ™. Then, in our case, P
and R per each sample can be computed as

Zl 1 o Zz 1 Y1 L
21:1 ur 21:1 U

Using Eq. (17), we can obtain F, = 2P,R,/(Pn + Rn»).
Finally, we compute F averaged over all N test samples:

F_Nan

P, = , Rn= (17)

4.3 Resultsand Discussion

We did not perform any feature transformation such as TFIDF
(see, e.g., [14]) because we wanted to purely evaluate the
basic performance of each detection method. For every de-
tection problem, we evaluated all the methods mentioned
above by using five pairs of training and test sample sets.

In our first set of experiments, the number of training (test)
samples was set to 2,000 (3,000). In our second set of exper-
iments, we focused on detection performance for test sam-
ples with unseen category vectors that did not appear in
the training samples. For convenience, hereafter we call this
test data uc-test samples to discriminate between the two
kinds of test data. Since uc-test samples always had mul-
tiple topics and their frequency vectors were substantially
different from those in the training samples, they are avail-
able to severely evaluate the generalization ability of each of
the detection methods. In our third set of experiments, to
evaluate the robustness of the PMM approach, we reduced
the number of training samples from 2, 000 to 500.

We compare the mean of F values over five trials on the
test (Tables 2 and 4) or the uc-test (Tables 3 and 5) sam-
ples. Moreover, the standard deviation of the five trials is
also shown in each parenthesis. For the lack of space, we
omitted the standard deviations in Tables 3 and 5. PMMs
took about five minutes for trainig (2,000 data) and about
just one minute for test (3,000 data) on 2.0 Ghz pentium,
averaged over 11 problmes.

By tuning parameters, SVM produced fairly better results
than the NB method, although SVM is also binary approach.
The detection performance by SVM, however, were lower
than those by PMMs in almost all problems. These exper-
imental results support our claim that since SVM does not
consider generative models of multi-category text, it has an

Table 3: Detection performance for uc-test samples
using 2,000 training samples.

Problem NB SVM kNN NN PMM1 PMM2
Arts. 224 269 26.0 221 31.1 31.0
Busi. 325 364 393 379 39.5 38.7
Comp. 247 278 303 258 33.3 33.6
Edu. 179 246 246 233 31.0 30.6
Enter. 246 298 289 250 37.7 37.7
Health 37.0 40.8 40.1 37.8 40.1 40.2
Rec. 276 292 29.1 264  35.7 35.2
Ref. 205 249 269 236 324 33.2
Sci. 227 285 28.3 246 34.5 33.8
Soc.&Sci. 20.8 259 284 224 @ 29.8 29.3
Soc.& Cul. 225 265 28.0 26.0 33.2 33.5

important limitation when applied to the multi-category de-
tection problem.

When the trainig sample size was 2,000, kNN provided com-
parable results to the NB method. On the other hand, when
the trainig sample size was 500, it obtained comparable or
slightly better results than SVM. However, in both cases,
PMDMs significantly outperformed KNN. This indicates that
perhaps memory-based approach has a limitation of its gen-
eralization ability and it is of quite importance to extract
the smaller number of representative prototypes like in our
approach.

The results of well-reqularized NN were moderate, although
it can make curved discrimination boundaries. This means
that such kind of flexibility would be unnecessary for dis-
crimination of high-dimensional, sparse text samples even
in the case of multi-category detection problem. In additon,
the training time of NN was intolerable.

In our experiments, PMM-I provided better results than
PMML-II, although there were no significant differences in
the case of uc-test samples. This indicates that a model
with fixed ai,m = 0.5 seems sufficient at least for the WWW
pages used in the experiments. In the case of “Social & Sci-
ence”, since the standard deviation was also relatively large
(5.1), we examined the result in more detail and found that
unfortunately since £ = 2 was inappropriate for three tri-
als among five ones, the performance of PMM-I could be
improved by tuning the hyperparameter. Incidentally, the
best performance for this problem was obtained by SVM.



Table 4: Detection performance for test samples using 500 training samples.

Problem Name NB SVM kNN NN PMM1 PMM2

Arts&Humanities 212 (1.0) 325 (05) 347 (0.4) 338 (0.4) 43.9 (1.0) 43.2 (0.8)
Business&Economy 73.9 (0.7) 73.8 (1.2) 75.6 (0.6) 74.8 (0.9) 75.2 (0.4) 69.7 (8.9)
Computers&Internet  46.1 (2.9) 44.9 (1.9) 44.1 (1.2) 45.1 (1.0) 56.4 (0.3) 55.4 (0.5)
Education 152 (0.9) 336 (0.5) 37.1 (1.0) 33.8 (L1) 41.8 (1.2) 41.9 (0.7)
Entertainment 34.1 (1.6) 42.7 (1.3) 439 (1.0) 45.3 (0.9) 53.0 (0.3) 53.1 (0.6)
Health 50.2 (0.3) 56.0 (1.0) 544 (0.9) 57.2 (0.7) 589 (0.9) 59.4 (L.0)
Recreation 22.1 (0.8) 321 (0.5) 37.4 (1.1) 33.9 (0.8) 46.5 (1.3) 455 (0.9)
Reference 327 (4.4) 388 (0.6) 481 (1.3) 43.1 (L.0) 54.1 (1.5) 53.5 (L.5)
Science 17.6 (1.6) 325 (1.0) 353 (0.4) 31.6 (1.7) 40.3 (0.7) 41.0 (0.5)
Social&Science 40.6 (12.3) 55.0 (1.1) 53.7 (0.6) 55.8 (4.0) 57.8 (6.5) 57.9 (5.9)
Society&Culture 34.2 (22) 383 (47) 402 (0.7) 409 (1.2) 49.7 (0.9) 49.0 (0.5)

Table 5: Detection performance for uc-test samples
using 500 training samples.

Problem NB SVM kNN NN PMM1 PMM2
Arts. 9.7 184 249 18.7 27.8 28.9
Busi. 303 33.7 35.2 334 32.6 34.0
Comp. 17.8 159 249 18.6 30.3 31.1
Edu. 57 164 20.0 155 25.5 26.8
Enter. 11.9 19.8 252 21.6 29.6 30.6
Health 22.8 298 34.9 294 32.7 33.9
Rec. 104 15.0 23.7 145 28.6 30.1
Ref. 7.3 13.6 229 15.5 27.0 27.7
Sci. 5.2 14.6 21.8 119 25.1 25.9
Soc.&Sci. 129 16.8 228 17.7 23.9 26.6
Soc.&Cul. 124 172 244 183 27.2 28.3

5. CONCLUSING REMARKS

In this paper we have presented a novel approach based on
parametric mixture models for multi-topic detection of text,
and efficient algorithms for both learning and prediction.
Clearly, some work remains in order to extend our approach
and algorithms, and to evaluate them by using a wider vari-
ety of problems. Neverthless, we have taken some important
steps along the path, and we are encouraged by our current
results on the important problem of detecting multiple top-
ics of real World Wide Web pages.

Recently, sophisticated distributional mixture models for
text modeling, pLSI/aspect model [5] and Latent Dirichlet
Allocation Model [2], have been proposed to represent sev-
eral latent subtopics. Combine these models with our models
might be interesting.
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