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t. We present an approa
h to revising qualitative 
ausal mod-els of gene regulation with DNA mi
roarray data. The method 
ombinessear
h through a spa
e of variable orderings with sear
h through a spa
eof parameters on 
ausal links, with weight de
ay driving the model to-ward integer values. We illustrate the te
hnique on a model of photo-synthesis regulation and asso
iated mi
roarray data. Experiments withsyntheti
 data that varied distan
e from the target model, noise, andnumber of training 
ases suggest the method is robust with respe
t tothese fa
tors. In 
losing, we suggest dire
tions for future resear
h anddis
uss related work on indu
ing 
ausal regulatory models.1 Introdu
tion and MotivationLike other s
ien
es, biology requires that its models �t available data. However,as the �eld moves from a fo
us on isolated pro
esses to system-level behaviors,developing and evaluating models has be
ome in
reasingly diÆ
ult. This 
hal-lenge has be
ome espe
ially 
lear with respe
t to models of gene regulation,whi
h attempt to explain 
omplex intera
tions in whi
h the expression levels ofsome genes in
uen
e the expression levels of others. A related 
hallenge 
on
ernsa shift in the nature of biologi
al data 
olle
tion from fo
used experiments, whi
hinvolve only a few variables, to 
DNA mi
roarrays, whi
h measure thousands ofexpression levels at the same time.In this paper, we des
ribe an approa
h that takes advantage of su
h nonex-perimental data to revise existing models of gene regulation. Our method usesthese data, 
ombined with knowledge about the domain, to dire
t sear
h for amodel that better explains the observations. We emphasize qualitative 
ausal a
-
ounts be
ause biologists typi
ally 
ast their regulatory models in this form. Wefo
us on model revision, rather than 
onstru
ting models from s
rat
h, be
ausebiologists often have partial models for the systems they study.We begin with a brief review of mole
ular biology and bio
hemistry, in
ludingthe 
entral notion of gene regulation, then present an existing regulatory modelof photosynthesis. After this, we des
ribe our method for using mi
roarray datato improve su
h models, whi
h 
ombines ideas from learning in neural networksand the notion of minimum des
ription length. Next we report experimental



2studies of the method that draws on both biologi
al and syntheti
 data, alongwith the results of these experiments. In 
losing, we suggest dire
tions for futureresear
h and dis
uss related work on indu
ing 
ausal models of gene regulation.2 Qualitative Causal Models of Gene RegulationA gene is a fundamental unit of heredity that determines an organism's physi
altraits. It is an ordered sequen
e of nu
leotides in deoxyribonu
lei
 a
id (DNA)lo
ated at at spe
i�
 position on a 
hromosome. Genes en
ode fun
tional prod-u
ts, 
alled proteins, that determine the stru
ture, fun
tion, and regulation ofan organism's 
ells and tissues.The gene's nu
leotide sequen
e is used to 
onstru
t proteins through a mul-tiple stage pro
ess. In brief, the enzyme RNA polymerase trans
ribes ea
h geneinto a 
omplementary strand of messenger ribonu
lei
 a
id (mRNA) using theDNA as a template. Ribosomes then translate the mRNA into a spe
i�
 se-quen
e of amino a
ids forming a protein. Trans
ription is 
ontrolled throughthe RNA polymerase by trans
ription fa
tors that let it target spe
i�
 pointson the DNA. The trans
ription fa
tors may themselves be 
ontrolled throughsignalling 
as
ades that relay signals from 
ellular or extra-
ellular events. Typ-i
ally, a signalling 
as
ade phosphorylates (or dephosphorylates) a trans
riptionfa
tor, 
hanging its 
onformation (i.e., physi
al stru
ture) and its ability to bindto the trans
ription site. Translation is 
ontrolled by many di�erent me
hanisms,in
luding repressors binding to mRNA that prevents translation into proteins.In our work, we fo
us on revising biologi
al models that relate external 
ellsignals to 
hanges in gene trans
ription (as measured by mRNA) and, ulti-mately, phenotype. Spe
i�
ally, we look at a model of photosynthesis regula-tion that is intended to explain why Cyanoba
teria blea
hes when exposed tohigh light 
onditions and how this prote
ts the organism. This model, shownin Figure 1, was adapted from a model provided by a mi
robiologist (Grossmanet al., 2001).1Ea
h node in the model 
orresponds to an observable or theoreti
alvariable that denotes a measurable stimulus, gene expression level, or physi
al
hara
teristi
. Ea
h link stands for a 
ausal biologi
al pro
ess through whi
h onevariable in
uen
es another. Solid lines in the �gure denote internal pro
esses,while dashes indi
ate pro
esses 
onne
ted to the environment.The model states that 
hanges in light level modulate the expression of dspA,a protein hypothesized to serve as a sensor. This in turn regulates NBLR andNBLA expression, whi
h then redu
es the number of phy
obilisome (PBS) rodsthat absorb light. The level of PBS is measured photometri
ally as the organism'sgreenness. The redu
tion in PBS prote
ts the organism's health by redu
ingabsorption of light, whi
h 
an be damaging at high levels. The organism's healthunder high light 
onditions 
an be measured in terms of the 
ulture density.1 The paper des
ribes an initial model for high light response in the Cyanoba
teriumSyne
ho
o

us. This model was modi�ed slightly for the Cyanoba
terium used inour experiments, Syne
ho
ystis PCC6803, by a
tions su
h as repla
ing nblS with itshomolog dspA.
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Figure 1. Initial model for photosynthesis regulation of wild type Cyanoba
teria.The sensor dspA impa
ts health through a se
ond pathway by in
uen
ing anunknown response regulator RR, whi
h in turn down regulates expression ofthe gene produ
ts psbA1, psbA2, and 
p
B. The �rst two positively in
uen
ethe level of photosyntheti
 a
tivity (Photo) by altering the stru
ture of thephotosystem. If left unregulated, this se
ond pathway would also damage theorganism in high light 
onditions.Although the model in
orporates quantitative variables, it is qualitative inthat it spe
i�es 
ause and e�e
t but not the exa
t numeri
al form of the re-lationship. For example, one 
ausal link indi
ates that in
reases in NBLR willin
rease NBLA, but it does not spe
ify the form of the relationship, nor does itspe
ify any parameters.The model is both partial and abstra
t. The biologist who proposed themodel made no 
laim about its 
ompleteness and 
learly viewed it as a workinghypothesis to whi
h additional genes and pro
esses should be added as indi
atedby new data. Some links are abstra
t in the sense that they denote entire 
hainsof subpro
esses. For example, the link from dspA to NBLR stands for a signalingpathway, the details of whi
h are not relevant at this level of analysis. The modelalso in
ludes a theoreti
al variable RR, an unspe
i�ed gene (or possibly a set ofgenes) that a
ts as an intermediary 
ontroller.3 An Approa
h to Revising Qualitative Causal ModelsIn this paper, we represent 
ausal models in terms of linear relationships amongvariables. That is, ea
h quantitative variable x(i) is represented with an equationof the form x(i) = i�1Xj=1A(i; j)x(j) + b(i) ; (1)where A(i; j) des
ribes the 
ausal e�e
t of variable x(j) on x(i) and b(i) is anadditive 
onstant. The variables in a model are ordered and variable x(i) 
anonly be in
uen
ed by those variables that 
ome before it in the 
ausal ordering.



4 Using matrix form, we 
an represent the equations for all x(i), i = 1::n, asx = Ax+ b. In this formulation, A(i; j) = 0 if i � j, where A(i; j) denotes theelement in row i and 
olumn j of A. This 
onstraint enfor
es the 
ausal orderingon the variables. A model is 
ompletely spe
i�ed by an ordering of variablesin x and an assignment of values to all elements of A and b that satisfy theabove 
onstraints. This de�nes the spa
e of models that our revision methodwill 
onsider.However, we still need some way to map an initial biologi
al model onto thisnotation. If we let A0 and b0 denote the initial model, then we 
an transformqualitative models like that in Figure 1 into a matrix A0 by setting A(i; j) = 1if there is a positive link from variable j to i in the model, A(i; j) = �1 if thelink is negative, and A(i; j) = 0 otherwise. We set the ve
tor b0 to zero for allits elements.Given A0, b0, and observations on x, we learn new values for A and b by1. Pi
king an initial ordering for variables in x;2. Learning the best real-valued matrix A a

ording to a s
ore fun
tion thatpenalizes for di�eren
es from A0, and is subje
t to the ordering 
onstraints;3. Swapping variables in the ordering and going to step 2 (i.e., performing hill-
limbing sear
h in the spa
e of variable orderings), 
ontinuing until the s
oreobtained no longer improves; and4. Transforming the real matrixA that has the best s
ore into a dis
rete versionwith A(i; j) 2 �1; 0; 1 with a thresholding method.Step 1 in this revision algorithm determines the starting state of the sear
h. Ourapproa
h sele
ts a random ordering that is 
onsistent with the partial orderingimplied by the initial model. During step 2, our method invokes an approa
hto equation revision that transforms the equation x = Ax + b into a neuralnetwork, revises weights in that network, and then transforms the network ba
kinto equations in a fashion similar to that des
ribed by Saito et al. (2001).This neural network approa
h uses a minimum des
ription length (Rissanen,1989) 
riterion during training to penalize models that di�er from the initialmodel. For example, suppose w0 is the parameter ve
tor of the neural networkthat 
orresponds to the initial model. We de�ne our revision task as �nding a wthat lets the network 
losely repli
ate the observed data and is also reasonably
lose to w0. To this end, we 
onsider a 
ommuni
ation problem where a senderwishes to transmit a data set to a re
eiver using a message of the shortestpossible length. However, unlike the standard MDL 
riterion, we assume thatthe initial model with w0 is known to the re
eiver. Namely, we try to sendmessage length with respe
t to w0 � w, rather than with respe
t to w. Sin
ewe 
an avoid en
oding parameter values equal to the initial ones, this metri
prefers the initial model. The new parameters w0 �w are regarded as weightsof the neural network, and their initial values are set to zero. Then, in order toobtain a learning result that is reasonably 
lose to the initial model, the networkis trained with weight de
ay, using a method 
alled the MDL regularizer (Saito& Nakano, 1997).



5When the modeling task in
ludes some unobserved variables, like RR inFigure 1, we 
annot dire
tly revise links asso
iated with those variables. To 
opewith su
h situations, our method adopts a simple forward-ba
kward estimationbased on the initial model. If x(i) is an unobserved variable, then its value 
anbe estimated in the forward dire
tion by the equation, x̂(i)(0) =Pj A(i; j)x(j)+b(j). On the other hand, if S is a set of observed variables linked dire
tly fromx(i), i.e., S = fx(k) : k > i ^ A(k; i) 6= 0g, then for x(k) 2 S, the equationfor the ba
kward estimation is x(i) = A(k; i)�1(x(k)�Pj 6=i A(k; j)x(j)� b(k)).This lets us estimate the values fx̂(i)(1); :::; x̂(i)(M)g, where M is the number ofelements in S. Finally, our method estimates the value of x(i) as the averageof these values using the equation x̂(i) = (M + 1)�1PMm=0 x̂(i)(m). One 
ouldrepeat these two pro
edures, estimation of the unobserved variables and revisionof the parameters, although the 
urrent implementation makes only one pass.As stated above, our method performs gradient sear
h through a spa
e ofparameters on 
ausal links, with weight de
ay driving the model toward integervalues. However, the resulting values are not stri
tly integers. To over
ome thisproblem, in step 4 we employ a simple thresholding method. After sorting theresulting parameter values to predi
t one variable x(i), the system uses twothresholds, T�1 and T+1, to divide this sorted list into three portions. Parametervalue A(i; j) is set to �1 if A(i; j) < T�1, to +1 if A(i; j) > T+1, and to 0otherwise. Note that T�1 � T+1, and we 
an obtain all possible integer lists with
omputational 
omplexity O(N2), where N denotes the number of parameters.Given these integer lists, our method sele
ts the result that minimizes theMDL 
ost fun
tion de�ned by f0:5�s�log(MSE)g+fr�log(N)g, where s is thenumber of training samples, r is the number of revised parameters, and MSEis the mean squared error on the samples. The �rst term of the 
ost fun
tionis a 
ode length for transmitting data, derived by assuming Gaussian noise forvariables, while the se
ond term is a 
ode length for revision information, i.e.,multipli
ation of the number of revised parameters and the 
ost of en
oding aninteger to indi
ate the parameter that is revised.4 Experimental Studies of the Revision MethodIn this se
tion, we des
ribe experimental studies of our revision method. We takea dual approa
h of evaluating the system using both natural data obtained frommi
roarrays of Cyanoba
teria 
ultures and syntheti
 data generated from knownmathemati
al models. Natural data lets us evaluate the biologi
al plausibilityof 
hanges suggested by our algorithm. However, be
ause we have an extremelylimited number of mi
roarrays, it 
an be diÆ
ult to evaluate the reliability of thesuggested revisions even if they appear biologi
ally plausible. Therefore, we alsoused syntheti
 data to evaluate the robustness and reliability of our approa
h.Be
ause we 
an generate syntheti
 data from a known model, we 
an measurethe sensitivity and reliability of our algorithm in the presen
e of 
ompli
atingfa
tors su
h as errors in the initial model, small sample sizes, and noise.



64.1 Revising the Model of Photosynthesis RegulationWe applied our method to revise the regulatory model of photosynthesis forwild type Cyanoba
teria.We have mi
roarray data whi
h in
ludes measurementsfor approximately 300 genes believed to play a role in photosynthesis. For thisanalysis, we fo
us on the genes in the model and do not 
onsider links to othergenes. The array data were 
olle
ted at 0, 30, 60, 120, and 360 minutes afterhigh light 
onditions were introdu
ed, with four repli
ated measurements atea
h time point. We treat both RR and Photo, whi
h represents the stru
tureof the photosystem, as unmeasured variables. We 
urrently treat the data asindependent samples and ignore their temporal aspe
t, along with dependen
iesamong the four repli
ates.We implemented our method in the C programming language and 
ondu
tedall experiments on a 1:3 Ghz Pentium running Linux. Revising the photosynthe-sis model took 0.02 se
onds of CPU time. For ea
h variable, the observed valueswere normalized to a mean of zero and a standard deviation of one. Figure 2shows the revised model, whi
h re
e
ts three 
hanges:1. dropping the link from dspA to RR;2. 
onne
ting Photo to RR instead of psbA1 and psbA2; and3. 
hanging the sign of the link from PBS to Health from negative to positive.The �rst two 
hanges are diÆ
ult to explain from a biologi
al perspe
tive. Be-
ause dspA is a light sensor, there should be either a dire
t or indire
t pathlinking it with the genes 
p
B, psbA1, or psbA2. Dropping the link dis
onne
tsdspA from those genes and removes it as possible 
ause. Also, the stru
ture of thephotosystem (Photo) is believed to depend on at least one of psbA1 or psbA2,and 
onne
ting Photo only to RR removes psbA1 and psbA2 as parents.2Changing the sign of the link from PBS to Health is more plausible. The ini-tial model was spe
i�ed for high light 
onditions in whi
h ex
essive light levelsdamage the organism. However, at lower light levels, in
reased PBS should aidthe organism be
ause it is a vital 
omponent in energy produ
tion. One expla-nation suggested by the mi
robiologist is that light levels during the biologi
alexperiment may not have been set 
orre
tly and were not high enough to redu
ehealth.4.2 Robustness of the Revision Approa
hWe evaluated the robustness of our approa
h by generating syntheti
 data froma known model and varying fa
tors of interest. Spe
i�
ally, we varied the numberof training samples, the number of errors in the initial model, the observabilityof variables, and the noise level. We expe
ted ea
h of these fa
tors to in
uen
ethe behavior of the revision algorithm.2 The genes psbA1 and psbA2 en
ode variants of the D1 protein, a ne
essary and
entral 
omponent of the Photosystem II rea
tion 
enter (Wiklund et al., 2001).
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teria.To this end, we generated training data by treating the stru
ture of themodel in Figure 1 as the true model. We assumed that ea
h variable was a linearfun
tion of its parents with noise added from a random normal distribution. Theroot 
ausal variable, Light, has no parents and was assigned a random uniformvalue between 0 and 1. We generated initial models to serve as starting points forrevision by randomly adding links to, or deleting links from, the true model inFigure 1. Our dependent measure was the net number of 
orre
tions, that is, thenumber of 
orre
t 
hanges minus the number of in
orre
t 
hanges, suggested bythe revision pro
ess. For ea
h experimental 
ondition, we generated 20 distin
ttraining sets and averaged the results for this measure.Figure 3 (a) shows the results from one experimental 
ondition that involvedonly observable variables and only a small amount of noise (� = 0:1). The x axisin the graph represents the number of errors in the initial model, whereas they axis spe
i�es the net number of 
orre
tions. The three 
urves 
orrespond todi�erent size training sets, with the smallest 
ontaining only 25 instan
es and thelargest involving 100 observations. In general, the revision method fared quitewell, in that it 
onsistently 
orre
ted almost all of the errors in the initial model.More data improved this performan
e, with 100 training 
ases being enough togive almost perfe
t results on all 20 runs.However, other fa
tors 
an degrade the system's behavior somewhat. Fig-ure 3 (b) shows the results at the same noise level when the variable RR isunobservable but all others are available. Overall, the net number of 
orre
tionsde
reased substantially 
ompared to the fully observable 
ondition. However, themethod still has enough power to re
over portions of the true model. Figure 3 (
)and (d) show the system's behavior with RR unobserved at higher levels of noise,with � = 0:2 and � = 0:4, respe
tively. The net number of 
orre
tions underthese 
onditions is similar to that when � = 0:1, whi
h suggests that our ap-proa
h is robust with respe
t to noise of this type. Note that � = 0:4 
onstitutesa rather high noise level in 
omparison with the range of the variables (e.g., lightvaries from 0 to 1).We should also note that the system never suggested 
hanges to the initialmodel when it was 
orre
t (i.e., 
ontained zero errors). This indi
ates that therevision method is behaving in a 
onservative manner that is unlikely to make



8a good model worse, even in the presen
e of noise, unobservable variables, andsmall samples. This in turn suggests that our use of minimum des
ription lengthis having the desired e�e
t.
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(
) (d)Figure 3. Average net number of 
orre
tions to the initial model for 25, 50, and 100samples when (a) all variables are observed and � = 0:1, (b) the variable RR is unob-served and � = 0:1, (
) RR is unobserved and � = 0:2, and (d) RR is unobserved and� = 0:4.5 Dire
tions for Future Resear
hThe results from our experiments on Cyanoba
teria data were disappointing, asthey were diÆ
ult to explain from a biologi
al perspe
tive. However, on syntheti
data our system was able to improve in
orre
t initial models even when therewere few training samples, unobserved variables, and noise.This suggests that our general approa
h is feasible, but that we may need toaddress some of the limitations, 
hosen by design, in the approa
h. For instan
e,



9we modeled the relationships between genes as a linear fun
tion. Although linearmodels are desirable be
ause they have few parameters, they 
annot model 
om-binatorial e�e
ts among genes or thresholds in whi
h a gene's expression mustbe above a 
ertain level before it 
an a�e
t other genes. The neural networkapproa
h to revision is not limited to linear models and we 
ould use a moregeneral form to represent relationships between genes.We also restri
ted the genes that 
ould appear in the model to a small subsetof those measured by the mi
roarray 
hips. The 
omplete set of data 
ontainsabout 300 variables from whi
h we used the 11 variables present in the ini-tial model. Restri
ting the number of variables involves a tradeo�. In
ludingtoo many variables for the number of samples makes estimating relationshipsunreliable be
ause of the multiple hypothesis testing problem (Sha�er, 1995).However, using too few variables in
reases the likelihood that we may have ig-nored an important variable from the analysis. Future implementations 
ouldminimize this problem by in
luding an operator for adding new genes during therevision pro
ess and using domain knowledge to sele
t only the most promising
andidates for in
orporation into the model.In addition, we should extend our approa
h to model revision in various otherways. Sin
e trans
riptional gene regulation takes time to o

ur, future systemsshould sear
h through an expanded spa
e of models that in
lude time delayson links3 and feedba
k 
y
les. To handle more 
omplex biologi
al pro
esses, itshould also represent and revise models with subsystems that have little in-tera
tion with ea
h other. Finally, ea
h of these extensions would bene�t fromin
orporation of additional biologi
al knowledge, 
ast as taxonomies over bothgenes and regulatory pro
esses, to 
onstrain the sear
h for improved models.Finally, we must test our approa
h on both more regulatory models and moremi
roarray data before we 
an judge its pra
ti
al value. Our biologist 
ollabora-tors are 
olle
ting additional data on Cyanoba
teria under more variable 
ondi-tions, whi
h we predi
t will provide additional power to our revision method. Wealso plan to evaluate the te
hnique on additional data sets that we have a
quiredfrom other biologists, in
luding ones that involve yeast development and lung
an
er.6 Related Resear
hAlthough most 
omputational analyses of mi
roarray data rely on 
lusteringto group related genes, we are not the �rst to fo
us on indu
ing 
ausal mod-els of gene regulation. Most resear
h on this topi
 en
odes regulatory mod-els as Bayesian networks with dis
rete variables (e.g., Friedman et al., 2000;Hartemink, 2002; Ong et al., 2002). Be
ause mi
roarray data are quantitative,this approa
h often in
ludes a dis
retization step that may lose important in-formation, whereas our approa
h deals dire
tly with the observed 
ontinuous3 An alternative is to model the regulation between genes with di�erential equations.



10values.4 These resear
hers also report methods that 
onstru
t 
ausal modelsfrom s
rat
h, rather than revising an initial model, though some in
orporateba
kground knowledge to 
onstrain the sear
h pro
ess.An alternative approa
h represents hypotheses about gene regulation as lin-ear 
ausal models, whi
h relate 
ontinuous variables through a set of linear equa-tions. Su
h systems evaluate 
andidate models in terms of their ability to predi
t
onstraints among partial 
orrelations, rather than their ability to predi
t thedata dire
tly. Within this framework, some methods (e.g., Saavedra et al., 2001)
onstru
t a linear 
ausal model from the ground up, whereas others (e.g., Lang-ley et al., 2002) instead revise an initial model, as in the approa
h we report here.One advantage of this 
onstraint-based paradigm is that it 
an infer qualitativemodels dire
tly, without the need to dis
retize or �t 
ontinuous parameters. In
ontrast, our te
hnique 
ombines sear
h through a parameter spa
e with weightde
ay to a
hieve a similar end.We should also mention approa
hes that, although not 
on
erned with generegulation, also 
onstru
t 
ausal models in s
ienti�
 domains. One example
omes from Koza et al. (2001), whose method formulates a quantitative modelof metaboli
 pro
esses from syntheti
 time series about 
hemi
al 
on
entrations.Another involves Zupan et al.'s (2001) GenePath, whi
h infers a qualitativegeneti
 network to explain phenotypi
 results from gene kno
kout experiments.Mahidadia and Compton (2001) report an intera
tive system for revising quali-tative models from experimental results in neuroendo
rinology. Finally, our ap-proa
h to revising s
ienti�
 models borrows ideas from Saito et al. (2001), whotransform an initial quantitative model into a neural network and utilize weightlearning to improve its �t to observations.7 Con
lusionsIn this paper, we 
hara
terized the task of dis
overing a qualitative 
ausal modelof gene regulation based on data from DNA mi
roarrays. Rather than attemptingto 
onstru
t the model from s
rat
h, we instead assume an existing model hasbeen provided biologists who want to improve its �t to the data. These modelsrequire a 
ausal ordering on variables, links between variables, and signs onthese links. We presented an approa
h to this revision task that 
ombines a hill-
limbing sear
h through the spa
e of variable orderings and a gradient des
entsear
h for weights on links, with the latter using a weight de
ay method guidedby minimum des
ription length to drive weights to integer values.We illustrated the method's behavior on a model of photosynthesis regulationin Cyanoba
teria, using mi
roarray data from biologi
al experiments. However,our experimental evaluation also relied on syntheti
 data, whi
h let us varysystemati
ally the distan
e between the initial and target models, the amount oftraining data available, and the noise in these data. We found that the methods
aled well on ea
h of these dimensions, whi
h suggests that it may prove a useful4 Imoto et al. (2002) report one way to indu
e quantitative models of gene regulationwithin the framework of Bayesian networks.



11tool for revising models based on biologi
al data. We noted that our approa
h hasboth similarities to, and di�eren
es from, other re
ent te
hniques for indu
ing
ausal models of gene regulation. We must still evaluate the method on otherdata sets and extend it on various fronts, but our initial experiments on syntheti
data have been en
ouraging.A
knowledgementsThis work was supported by the NASA Biomole
ular Systems Resear
h Programand by NTT Communi
ation S
ien
e Laboratories, Nippon Telegraph and Tele-phone Corporation. We thank Arthur Grossman, Je� Shrager, and C. J. Tu forthe initial model, for mi
roarray data, and for advi
e on biologi
al plausibility.Referen
esFriedman, N., Linial, M., Na
hman, I., & Peer, D. (2000). Using Bayesian Net-works to Analyze Expression Data. Journal of Computational Biology , 7 , 601{620.Grossman, A. R., Bhaya, D., & He, Q. (2001). Tra
king the Light Environmentby Cyanoba
teria and the Dynami
 Nature of Light Harvesting. The Journalof Biologi
al Chemistry , 276 , 11449{11452.Hartemink, A. J., Gi�ord, D. K., Jaakkola, T. S., & Young, R. A. (2002). Com-bining Lo
ation and Expression Data for Prin
ipled Dis
overy of Geneti
 Reg-ulatory Network Models. Pa
i�
 Symposium on Bio
omputing , 7 , 437{449.Imoto, S., Goto, T., & Miyano, S. (2002). Estimation of Geneti
 Networks andFun
tional Stru
tures Between Genes by using Bayesian Networks and Non-parametri
 Regression. Pa
i�
 Symposium on Bio
omputing , 7 , 175{186.Koza, J. R., Mydlowe
, W., Lanza, G., Yu, J., & Keane, M. A. (2001). Reverseengineering and automati
 synthesis of metaboli
 pathways from observeddata using geneti
 programming. Pa
i�
 Symposium on Bio
omputing , 6 , 434{445.Langley, P., Shrager, J., & Saito, K. (in press). Computational dis
overy of
ommuni
able s
ienti�
 knowledge. In L. Magnani, N. J. Nersessian, & C. Pizzi(Eds), Logi
al and 
omputational aspe
ts of model-based reasoning . Dordre
ht:Kluwer A
ademi
.Mahidadia, A., & Compton, P. (2001). Assisting model-dis
overy in neuroen-do
rinology. Pro
eedings of the Fourth International Conferen
e on Dis
overyS
ien
e (pp. 214{227). Washington, D.C.: Springer.Ong, I. M., Glasner, J., & Page, D. (2002). Modeling Regulatory Pathways inE.Coli from Time Series Expression Pro�les. Pro
eedings of the Tenth Inter-national Conferen
e on Intelligent Systems for Mole
ular Biology.



12Rissanen, J. (1989). Sto
hasti
 
omplexity in statisti
al inquiry . World S
ienti�
,Singapore.Saavedra, R., Spirtes, P., S
heines, R., Ramsey, J., & Glymour, C. (2001). Issuesin Learning Gene Regulation from Mi
roarray Databases. (Te
h. Report No.IHMC-TR-030101-01). Institute for Human and Ma
hine Cognition, Univer-sity of West Florida.Saito, K., Langley, P., Grenager, T., Potter, C., Torregrosa, A., & Klooster, S. A.(2001). Computational revision of quantitative s
ienti�
 models. Pro
eedingsof the Fourth International Conferen
e on Dis
overy S
ien
e (pp. 336{349).Washington, D.C.: Springer.Saito, K., & Nakano, R. (1997). MDL regularizer: a new regularizer based onMDL prin
iple. Pro
eedings of the 1997 International Conferen
e on NeuralNetworks (pp. 1833{1838). Houston, Texas.Sha�er, J. P. (1995). Multiple Hypothesis Testing. Annual Review Psy
hology,46, 561{584.Wiklund, R., Salih, G. F., Maenpaa, P., & Jansson, C. (2001) Engineering of theprotein environment around the redox-a
tive TyrZ in photosystem II. Journalof European Bio
hemistry , 268, 5356{5364.Zupan, B., Bratko, I., Demsar, J., Be
k, J. R., Kuspa, A., Shaulsky, G. (2001).Abdu
tive inferen
e of geneti
 networks. Pro
eedings of the Eighth EuropeanConferen
e on Arti�
ial Intelligen
e in Medi
ine. Cas
ais, Portugal.


