
Computational Revision ofQuantitative Scienti�c ModelsKazumi Saito,1 Pat Langley,2 Trond Grenager,2 ChristopherPotter,3 Alicia Torregrosa3, and Steven A. Klooster31 NTT Communication Science Laboratories2-4 Hikaridai, Seika, Soraku, Kyoto 619-0237 Japansaito@cslab.kecl.ntt.co.jp2 Computational Learning Laboratory, CSLIStanford University, Stanford, California 94305 USAflangley,grenagerg@cs.stanford.edu3 Ecosystem Science and Technology BranchNASA Ames Research Center, MS 242-4Mo�ett Field, California 94035 USAfcpotter,lisy,skloosterg@gaia.arc.nasa.govAbstract. Research on the computational discovery of numeric equa-tions has focused on constructing laws from scratch, whereas work ontheory revision has emphasized qualitative knowledge. In this paper, wedescribe an approach to improving scienti�c models that are cast as setsof equations. We review one such model for aspects of the Earth ecosys-tem, then recount its application to revising parameter values, intrinsicproperties, and functional forms, in each case achieving reduction in er-ror on Earth science data while retaining the communicability of theoriginal model. After this, we consider earlier work on computationalscienti�c discovery and theory revision, then close with suggestions forfuture research on this topic.1 Research Goals and MotivationResearch on computational approaches to scienti�c knowledge discovery has along history in arti�cial intelligence, dating back over two decades (e.g., Lan-gley, 1979; Lenat, 1977). This body of work has led steadily to more powerfulmethods and, in recent years, to new discoveries deemed worth publication inthe scienti�c literature, as reviewed by Langley (1998). However, despite thisprogress, mainstream work on the topic retains some important limitations.One drawback is that few approaches to the intelligent analysis of scienti�cdata can use available knowledge about the domain to constrain search for lawsor explanations. Moreover, although early work on computational discovery castdiscovered knowledge in notations familiar to scientists, more recent e�orts havenot. Rather, in
uenced by the success of machine learning and data mining, manyresearchers have adopted formalisms developed by these �elds, such as decisiontrees and Bayesian networks. A return to methods that operate on establishedscienti�c notations seems necessary for scientists to understand their results.



2 Like earlier research on computational scienti�c discovery, our general ap-proach involves de�ning a space of possible models stated in an establishedscienti�c formalism, speci�cally sets of numeric equations, and developing tech-niques to search that space. However, it di�ers from previous work in this area bystarting from an existing scienti�c model and using heuristic search to revise themodel in ways that improve its �t to observations. Although there exists someresearch on theory re�nement (e.g., Ourston & Mooney 1990; Towell, 1991),it has emphasized qualitative knowledge rather than quantitative models thatrelate continuous variables, which play a central role in many sciences.In the pages that follow, we describe an approach to revising quantitativemodels of complex systems. We believe that our approach is a general one ap-propriate for many scienti�c domains, but we have focused our e�orts on onearea { certain aspects of the Earth ecosystem { for which we have a viable model,existing data, and domain expertise. We brie
y review the domain and modelbefore moving on to describe our approach to knowledge discovery and modelrevision. After this, we present some initial results that suggest our approach canimprove substantially the model's �t to available data. We close with a discussionof related discovery work and directions for future research.2 A Quantitative Model of the Earth EcosystemData from the latest generation of satellites, combined with readings from groundsources, hold great promise for testing and improving existing scienti�c models ofthe Earth's biosphere. One such model, CASA, developed by Potter and Klooster(1997, 1998) at NASA Ames Research Center, accounts for the global produc-tion and absorption of biogenic trace gases in the Earth atmosphere, as well aspredicting changes in the geographic patterns of major vegetation types (e.g.,grasslands, forest, tundra, and desert) on the land.CASA predicts, with reasonable accuracy, annual global 
uxes in trace gasproduction as a function of surface temperature, moisture levels, and soil prop-erties, together with global satellite observations of the land surface. The modelincorporates di�erence equations that represent the terrestrial carbon cycle, aswell as processes that mineralize nitrogen and control vegetation type. Theseequations describe relations among quantitative variables and lead to changes inthe modeled outputs over time. Some processes are contingent on the values ofdiscrete variables, such as soil type and vegetation, which take on di�erent val-ues at di�erent locations. CASA operates on gridded input at di�erent levels ofresolution, but typical usage involves grid cells that are eight kilometers square,which matches the resolution for satellite observations of the land surface.To run the CASA model, the di�erence equations are repeatedly applied toeach grid cell independently to produce new variable values on a daily or monthlybasis, leading to predictions about how each variable changes, at each location,over time. Although CASA has been quite successful at modeling Earth's ecosys-tem, there remain ways in which its predictions di�er from observations, suggest-ing that we invoke computational discovery methods to improve its ability to �tthe data. The result would be a revised model, cast in the same notation as the



3Table 1. Variables used in the NPPc portion of the CASA ecosystem model.NPPc is the net plant production of carbon at a site during the year.E is the photosynthetic e�ciency at a site after factoring various sources of stress.T1 is a temperature stress factor (0 < T1 < 1) for cold weather.T2 is a temperature stress factor (0 < T2 < 1), nearly Gaussian in form but fallingo� more quickly at higher temperatures.W is a water stress factor (0:5 < W < 1) for dry regions.Topt is the average temperature for the month at which MON-FAS-NDVI takes onits maximum value at a site.Tempc is the average temperature at a site for a given month.EET is the estimated evapotranspiration (water loss due to evaporation and transpi-ration) at a site.PET is the potential evapotranspiration (water loss due to evaporation and transpi-ration given an unlimited water supply) at a site.PET-TW-M is a component of potential evapotranspiration that takes into accountthe latitude, time of year, and days in the month.A is a polynomial function of the annual heat index at a site.AHI is the annual heat index for a given site.MON-FAS-NDVI is the relative vegetation greenness for a given month as measuredfrom space.IPAR is the energy from the sun that is intercepted by vegetation after factoring intime of year and days in the month.FPAR-FAS is the fraction of energy intercepted from the sun that is absorbed pho-tosynthetically after factoring in vegetation type.MONTHLY-SOLAR is the average solar irradiance for a given month at a site.SOL-CONVER is 0.0864 times the number of days in each month.UMD-VEG is the type of ground cover (vegetation) at a site.original one, that incorporates changes which are interesting to Earth scientistsand which improve our understanding of the environment.Because the overall CASA model is quite complex, involving many variablesand equations, we decided to focus on one portion that lies on the model's`fringes' and that does not involve any di�erence equations. Table 1 describes thevariables that occur in this submodel, in which the dependent variable, NPPc,represents the net production of carbon. As Table 2 indicates, the model predictsthis quantity as the product of two unobservable variables, the photosynthetice�ciency, E, at a site and the solar energy intercepted, IPAR, at that site.Photosynthetic e�ciency is in turn calculated as the product of the maximume�ciency (0.56) and three stress factors that reduce this e�ciency. One stressterm, T2, takes into account the di�erence between the optimum temperature,Topt, and actual temperature, Tempc, for a site. A second factor, T1, involves



4 Table 2. Equations used in the NPPc portion of the CASA ecosystem model.NPPc =Pmonth max (E � IPAR, 0)E = 0.56 � T1 � T2 � WT1 = 0.8 + 0.02 � Topt � 0:0005 � Topt2T2 = 1:18=[(1 + e0:2�(Topt�Tempc�10)) � (1 + e0:3�(Tempc�Topt�10))]W = 0:5 + 0:5 � EET/PETPET = 1:6 � (10 � Tempc = AHI)A � PET-TW-M if Tempc > 0PET = 0 if Tempc � 0A = 0:000000675 � AHI3 � 0:0000771� AHI2 + 0:01792 � AHI + 0:49239IPAR = 0:5 � FPAR-FAS � MONTHLY-SOLAR � SOL-CONVERFPAR-FAS = min((SR-FAS � 1:08)=SRDIFF(UMD-VEG), 0.95)SR-FAS = � (MON-FAS-NDVI + 1000) / (MON-FAS-NDVI � 1000)the nearness of Topt to a global optimum for all sites, re
ecting the intuitionthat plants which are better adapted to harsh temperatures are less e�cientoverall. The third term, W, represents stress that results from lack of moisture asre
ected by EET, the estimated water loss due to evaporation and transpiration,and PET, the water loss due to these processes given an unlimited water supply.In turn, PET is de�ned in terms of the annual heat index, AHI, for a site, andPET-TW-M, another component of potential evapotranspiration.The energy intercepted from the sun, IPAR, is computed as the productof FPAR-FAS, the fraction of energy absorbed photosynthetically for a givenvegetation type, MONTHLY-SOLAR, the average radiation for a given month,and SOL-CONVER, the number of days in that month. FPAR-FAS is a functionof MON-FAS-NDVI, which indicates relative greenness at a site as observed fromspace, and SRDIFF, an intrinsic property that takes on di�erent numeric valuesfor di�erent vegetation types as speci�ed by the discrete variable UMD-VEG.Of the variables we have mentioned, NPPc, Tempc, MONTHLY-SOLAR,SOL-CONVER, MON-FAS-NDVI, and UMD-VEG are observable. Three addi-tional terms { EET, PET-TW-M, and AHI { are de�ned elsewhere in the model,but we assume their de�nitions are correct and thus we can treat them as observ-ables. The remaining variables are unobservable and must be computed from theothers using their de�nitions. This portion of the model also contains a numberof numeric parameters, as shown in the equations in Table 2.3 An Approach to Quantitative Model RevisionAs noted earlier, our approach to scienti�c discovery involves re�ning modelslike CASA that involve relations among quantitative variables. We adopt thetraditional view of discovery as heuristic search through a space of models, withthe search process directed by candidates' ability to �t the data. However, weassume this process starts not from scratch, but rather with an existing model,



5and the search operators involve making changes to this model, rather thanconstructing entirely new structures.Our long-term goal is not to automate the revision process, but instead toprovide an interactive tool that scientists can direct and use to aid their modeldevelopment. As a result, the approach we describe in this section addressesthe task of making local changes to a model rather than carrying out globaloptimization, as assumed by Chown and Dietterich (2000). Thus, our softwaretakes as input not only observations about measurable variables and an existingmodel stated as equations, but also information about which portion of themodel should be altered. The output is a revised model that �ts the observeddata better than the initial one.Below we review two discovery algorithms that we utilize to improve thespeci�ed part of a model, then describe three distinct types of revision theysupport. We consider these in order of increasing complexity, starting with simplechanges to parameter values, moving on to revisions in the values of intrinsicproperties, and ending with changes in an equation's functional form.3.1 The RF5 and RF6 Discovery AlgorithmsOur approach relies on RF5 and RF6, two algorithms for discovering numericequations described Saito and Nakano (1997, 2000). Given data for some contin-uous variable y that is dependent on continuous predictive variables x1; : : : ; xn,the RF5 system searches for multivariate polynomial equations of the formy = w0 + JXj=1wj KYk=1 xwjkk = w0 + JXj=1wj exp KXk=1wjk ln(xk)! ; (1)Such functional relations subsume many of the numeric laws found by previouscomputational discovery systems like Bacon (Langley, 1979) and Fahrenheit( _Zytkow, Zhu, & Hussam, 1990).RF5's �rst step involves transforming a candidate functional form with Jsummed terms into a three-layer neural network based on the rightmost formof expression (1), in which the K hidden nodes in this network correspond toproduct units (Durbin & Rumelhart, 1989). The system then carries out searchthrough the weight space using the BPQ algorithm, a second-order learning tech-nique that calculates both the descent direction and the step size automatically.This process halts when it �nds a set of weights that minimize the squarederror on the dependent variable y. RF5 runs the BPQ method on networks withdi�erent numbers of hidden units, then selects the one that gives the best scoreon an MDL metric. Finally, the program transforms the resulting network intoa polynomial equation, with weights on hidden units becoming exponents andother weights becoming coe�cients.The RF6 algorithm extends RF5 by adding the ability to �nd conditions ona numeric equation that involve nominal variables, which it encodes using oneinput variable for each nominal value. To this end, the system �rst generates onesuch condition for each training case, then utilizes k-means clustering to generate



6a smaller set of more general conditions, with the number of clusters determinedthrough cross validation. Finally, RF6 invokes decision-tree induction to con-struct a classi�er that discriminates among these clusters, which it transformsinto rules that form the nominal conditions on the polynomial equation thatRF5 has generated.3.2 Three Types of Model Re�nementThere exist three natural types of re�nement within the class of models, likeCASA, that are stated as sets of equations that refer to unobservable variables.These include revising the parameter values in equations, altering the values foran intrinsic property, and changing the functional form of an existing equation.Improving the parameters for an equation is the most straightforward pro-cess. The NPPc portion of CASA contains some parameterized equations thatour Earth science team members believe are reliable, like that for computing thevariable A from AHI, the annual heat index. However, it also includes equationswith parameters about which there is less certainty, like the expression that pre-dicts the temperature stress factor T2 from Tempc and Topt. Our approach torevising such parameters relies on creating a specialized neural network that en-codes the equation's functional form using ideas from RF5, but also including aterm for the unchanged portion of the model. We then run the BPQ algorithm to�nd revised parameter values, initializing weights based on those in the model.We can utilize a similar scheme to improve the values for an intrinsic propertylike SRDIFF that the model associates with the discrete values for some nominalvariable like UMD-VEG (vegetation type). We encode each nominal term as aset of dummy variables, one for each discrete value, making the dummy variableequal to one if the discrete value occurs and zero otherwise. We introduce onehidden unit for the intrinsic property, with links from each of the dummy vari-ables and with weights that correspond to the intrinsic values associated witheach discrete value. To revise these weights, we create a neural network that in-corporates the intrinsic values but also includes a term for the unchanging partsof the model. We can then run BPQ to revise the weights that correspond tointrinsic values, again initializing them to those in the initial model.Altering the form of an existing equation requires somewhat more e�ort, butmaps more directly onto previous work in equation discovery. In this case, thedetails depend on the speci�c functional form that we provide, but because wehave available the RF5 and RF6 algorithms, the approach supports any of theforms that they can discover or specializations of them. Again, having identi�eda particular equation that we want to improve, we create a neural networkthat encodes the desired form, then invoke the BPQ algorithm to determineits parametric values, in this case initializing the network weights randomly.This approach to model re�nement supports changes to only one equation orintrinsic property at a time, but this is consistent with the interactive processdescribed earlier. We envision the scientist identifying a portion of the modelthat he thinks could be better, running one of the three revision methods toimprove its �t to the data, and repeating this process until he is satis�ed.



74 Initial Results on Ecosystem DataIn order to evaluate our approach to scienti�c model revision, we utilized datarelevant to the NPPc model available to the Earth science members of our team.These data consisted of observations from 303 distinct sites with known vegeta-tion type and for which measurements of Tempc, MON-FAS-NDVI, MONTHLY-SOLAR, SOL-CONVER, and UMD-VEG were available for each month duringthe year. In addition, other portions of CASA were able to compute values for thevariables AHI, EET, and PET-TW-M. The resulting 303 training cases seemedsu�cient for initial tests of our revision methods, so we used them to drive avariety of changes to the handcrafted model of carbon production.4.1 Results on Parameter RevisionOur Earth science team members identi�ed the equation for T2, one of thetemperature stress variables, as a likely candidate for revision. As noted earlier,the handcrafted expression for this term wasT2 = 1:8=[(1 + e0:2(Topt�Tempc�10))(1 + e�0:3(Tempc�Topt�10))] ;which produces a Gaussian-like curve that is slightly assymetrical. This re-
ects the intuition that photosynthetic e�ciency will decrease when temperature(Tempc) is either below or above the optimal (Topt).To improve upon this equation, we de�ned x = Topt�Tempc as an interme-diate variable and recast the expression for T2 as the product of two sigmoidalfunctions of the form �(a) = 1=(1+exp(�a)) and a parameter. We transformedthese into a neural network and used BPQ to minimize the error functionF1 =Psample (NPPc�Pmonthw0 � �(v10 + v11 � x) � �(v20 � v21 � x) �Rest)2 ;over the parameters fw0; v10; v11; v20; v21g, where Rest = 0.56 � T1 �W � IPAR.The resulting equation generated in this manner wasT2 = 1:80=[(1 + e0:05(Topt�Tempc�10:8)(1 + e�0:03(Tempc�Topt�90:33)] ;which has reasonably similar values to the original ones for some parameters butquite di�erent values for others.The root mean squared error (RMSE) for the original model on the availabledata was 467:910. In contrast, the error for the revised model was 457:757 onthe training data and 461:466 using leave-one-out cross validation. Thus, RF6'smodi�cation of parameters in the T2 equation produced slightly more than onepercent reduction in overall model error, which is somewhat disappointing.However, inspection of the resulting curves reveals a more interesting picture.Plotting the temperature stress factor T2 using the revised equations as a func-tion of the di�erence Topt � Tempc still gives a Gaussian-like curve, but withinthe e�ective range (from �30 to 30 Celsius) its values decrease monotonically.This seems counterintuitive but interesting from an Earth science perspective,



8as it suggests this stress factor has little in
uence on NPPc. Moreover, the origi-nal equation for T2 was not well grounded in �rst principles of plant physiology,making empirical improvements of this sort bene�cial to the modeling enterprise.As another candidate for parameter revision, we selected the PET equation,PET = 1:6 � (10 �max(Tempc; 0) = AHI)A � PET-TW-M ;which calculates potential water loss due to evaporation and transpiration givenan unlimited water supply. By transforming this expression intoPET = exp(ln(1:6) + A � ln(10)) � (max(Tempc; 0) = AHI)A � PET-TW-Mand replacing the parameter values ln(1:6) and ln(10) with the variables v0 andv1, we constructed a neural network and used BPQ for error minimization. Whentransforming the trained network back into the original form, the equation thatresulted wasPET = 1:56 � (9:16 �max(Tempc; 0) = AHI)A � PET-TW-M ;which has values that are very similar to those in the original model's equation.Moreover, since the RMSE for the obtained model was 464:358 on the train-ing data and 467:643 using leave-one-out cross validation, the revision processdid not improve the model's accuracy substantially. However, since the PETequation is based on Thornthwaite's (1948) method, which has been used con-tinuously for over 50 years, we should not be overly surprised at this negativeresult. Indeed, we are encouraged by the fact that our approach did not reviseparameters that have stood the test of time in Earth science.4.2 Results on Intrinsic Value RevisionAnother portion of the NPPc model that held potential for revision concernsthe intrinsic property SRDIFF associated with the vegetation type UMD-VEG.For each site, the latter variable takes on one of 11 nominal values, such asgrasslands, forest, tundra, and desert, each with an associated numeric value forSRDIFF that plays a role in the FPAR-FAS equation. This gives 11 parametersto revise, which seems manageable given the number of observations available.As outlined earlier, to revise these intrinsic values, we introduced one dummyvariable, UMD-VEGk, for each vegetation type such that UMD-VEGk = 1 ifUMD-VEG = k and 0 otherwise. We then de�ned SRDIFF(UMD-VEG) asexp(�Pkvk � UMD-VEGk) and, since SRDIFF's value is independent of themonth, we used BPQ to minimize, over the weights fvkg, the error functionF2 =Psite (NPPc� exp(Pkvk � UMD-VEGk) �Rest)2 ;where Rest =PmonthE �0:5�(SR-FAS�1:08)�MONTHLY-SOLAR�SOL-CONVER.Table 3 shows the initial values for this intrinsic property, as set by the CASAdevelopers, along with the revised values produced by the above approach when



9Table 3. Original and revised values for the SRDIFF intrinsic property, along withthe frequency for each vegetation type.vegetation type A B C D E F G H I J Koriginal 3.06 4.35 4.35 4.05 5.09 3.06 4.05 4.05 4.05 5.09 4.05revised 2.57 4.77 2.20 3.99 3.70 3.46 2.34 0.34 2.72 3.46 1.60clustered 2.42 3.75 2.42 3.75 3.75 3.75 2.42 0.34 2.42 3.75 2.42frequency 3.3 8.9 0.3 3.6 21.1 19.1 15.2 3.3 19.1 2.3 3.6we �xed other parts of the NPPc model. The most striking result is that therevised intrinsic values are nearly always lower than the initial values. The RMSEfor the original model was 467:910, whereas the error using the revised valueswas 432:410 on the training set and 448:376 using cross validation. The latterconstitutes an error reduction of over four percent, which seems substantial.However, since the original 11 intrinsic values were grouped into only fourdistinct values, we applied RF6's clustering procedure over the trained neuralnetwork to group the revised values in the same manner. We examined the e�ecton error rate as we varied the number of clusters from one to �ve; as expected,the training RMSE decreased monotonically, but the cross-validation RMSE wasminimized for three clusters of values. The estimated error for this revised modelis slightly better than for the one with 11 distinct values.Again, the clustered values are nearly always lower than the initial ones, aresult that is certainly interesting from an Earth science viewpoint. We suspectthat measurements of NPPc and related variables from a wider range of siteswould produce intrinsic values closer to those in the original model. However,such a test must await additional observations and, for now, empirical �t to theavailable data should outweigh the theoretical basis for the initial settings.In another approach to revising intrinsic values, we retained the originalgrouping of vegetation types into sets, with each type in a given set having thesame value. We utilized a weight-sharing technique to encode this backgroundknowledge in a neural network. For example, let vA and vF be weights corre-sponding to the SRDIFF values for vegetation types A and F, respectively; toensure these values remained the same, we treated them as a single weight, sayvAF . Here we can see that BPQ calculates the derivative of the error functionover vAF as a sum of the individual derivatives over vA and vF ,@F2@vAF = @F2@vA + @F2@vF :In the trained neural network, the derivative over vAF becomes zero, but thereis no guarantee that each derivative over vA or vF will do so. Therefore, we cantreat the sum of the absolute values for derivatives over shared weights, like vAand vF , as a criterion for the `unlikeness' among the elements of such a grouping.Table 4 shows the revised values for the intrinsic property SRDIFF that resultfrom this approach, along with values for the unlikeness criterion de�ned above.



10Table 4. Original and revised values, using the original groupings, for the SRDIFFintrinsic property, along with the frequency and unlikeness for each vegetation group.vegetation type A_F B_C E_J D_G_H_I_Koriginal 3.06 4.35 5.09 4.05revised 2.23 3.27 2.54 1.81frequency 22.4 9.2 23.4 44.9unlikeness 26.1 0.3 2.3 13.6As before, the obtained intrinsic values are always lower than the initial ones,and our criterion suggests that the group containing the vegetation types A andF has the least coherence. The RMSE for the revised model was 442:782 on thetraining data and 449:097 using leave-one-out cross validation, again indicatingabout four percent reduction in the model's overall error.4.3 Results on Revising Equation StructureWe also wanted to demonstrate our approach's ability to improve the functionalform of the NPPc model. For this purpose, we selected the equation for photo-synthetic e�ciency, E = 0:56 � T1 � T2 �W ;which states that this term is a product of the water stress term, W, and the twotemperature stress terms, T1 and T2. Because each stress factor takes on valuesless than one, multiplication has the e�ect of reducing photosynthetic e�ciencyE below the maximum 0.56 possible (Potter & Klooster, 1998).Since E is calculated as a simple product of the three variables, one naturalextension was to consider an equation that included exponents on these terms.To this end, we borrowed techniques from the RF5 system to create a neuralnetwork for such an expression, then used BPQ to minimize the error functionF3 =Psite (NPPc�Pmonthu0 � T1u1 � T2u2 �Wu3 � IPAR)2 ;over the parameters fu0; u1; u2; u3g, which assumes the equations that predictIPAR remain unchanged. We initialized u0 to 0.56 and the other parametersto 1.0, as in the original model, and constrained the latter to be positive. Therevised equation found in this manner,E = 0:521 � T10:00 � T20:03 �W 0:00 ;has a small exponent for T2 and zero exponents for T1 and W, suggesting theformer in
uences photosynthetic e�ciency in minor ways and the latter not atall. On the available data, the root mean squared error for the original modelwas 467:910. In contrast, the revised model has an RMSE of 443:307 on thetraining set and an RMSE of 446:270 using cross validation. Thus, the revised



11equation produces a substantially better �t to the observations than does theoriginal model, in this case reducing error by almost �ve percent.With regards to Earth science, these results are plausible and the most in-teresting of all, as they suggest that the T1 and W stress terms are unnecessaryfor predicting NPPc. One explanation is that the in
uence of these factors is al-ready being captured by the NDVI measure available from space, for which thesignal-to-noise ratio has been steadily improving since CASA was �rst developed.These results encouraged us to explore more radical revisions to the func-tional form for photosynthetic e�ciency. Thus, we told our system to consider aform that omitted the three stress factors but that included the four variables {Topt, Tempc, EET, and PET { that appear in their de�nitions:E = v0 � exp(�0:5 � (v1 �Topt + v2 �Tempc + v3 � EET+ v4 � PET+ v5)2) :This Gaussian-like activation function satis�es the constraint that E is positiveand less than one. Running BPQ to minimize the error function over fv0; : : : v5gproduced the equationE = 0:57 � exp(�0:5 � (�0:04 �Topt + 0:03 �Tempc� 0:03 � EET+ 0:01 � PET)2);where we eliminated the parameter v5 because its value was �0:003. The RMSEfor the revised model was 439:101 on the training data and 444:470 using leave-one-out cross validation, indicating more than �ve percent reduction in error.These results are very similar to those from our �rst approach, which pro-duced a cross validation RMSE of 446:270. In this case, the revised model issimpler in that it de�nes E directly in terms of Topt, Tempc, EET, and PET,rather than relying on the theoretical terms T1, T2, and W, two of which pro-vide no predictive power. On the other hand, the original form for E had a cleartheoretical interpretation, whereas the new version does not. In such situations,the �nal decision should be left to domain scientists, who are best suited tobalance a model's simplicity against its interepretability.5 Related Research on Computational DiscoveryOur research on computational scienti�c discovery draws on two previous lines ofwork. One approach, which has an extended history within arti�cial intelligence,addresses the discovery of explicit quantitative laws. Early systems for numericlaw discovery like Bacon (Langley, 1979; Langley et al., 1987) carried out aheuristic search through a space of new terms and simple equations. Numeroussuccessors like Fahrenheit ( _Zytkow et al., 1990) and RF5 (Saito & Nakano,1997) incorporate more sophisticated and more extensive search through a largerspace of numeric equations.The most relevant equation discovery systems take into account domainknowledge to constrain the search for numeric laws. For example, Kokar's (1986)Coper utilized knowledge about the dimensions of variables to focus attentionand, more recently, Washio and Motoda's (1998) SDS extends this idea to sup-port di�erent types of variables and sets of simultaneous equations. Todorovski



12and D�zeroski's (1997) LaGramge takes a quite di�erent approach, using do-main knowledge in the form of context-free grammars to constrain its searchthrough a space of di�erential equation models that describe temporal behavior.Although research on computational discovery of numeric laws has empha-sized communicable scienti�c notations, it has focused on constructing such lawsrather than revising existing ones. In contrast, another line of research has ad-dressed the re�nement of existing models to improve their �t to observations.For example, Ourston and Mooney (1990) developed a method that used train-ing data to revise models stated as sets of propositional Horn clauses. Towell(1991) reports another approach that transforms such models into multilayerneural networks, then uses backpropagation to improve their �t to observations,much as we have done for numeric equations. Work in this paradigm has em-phasized classi�cation rather than regression tasks, but one can view our workas adapting the basic approach to equation discovery.We should also mention related work on the automated improvement ofecosystem models. Most AI work on Earth science domains focuses on learn-ing classi�ers that predict vegetation from satellite measures like NDVI, as con-trasted with our concern for numeric prediction. Chown and Dietterich (2000)describe an approach that improves an existing ecosystem model's �t to contin-uous data, but their method only alters parameter values and does not reviseequation structure. On another front, Schwabacher and Langley (2001) use arule-induction algorithm to discover piecewise linear models that predict NDVIfrom climate variables, but their method takes no advantage of existing models.6 Directions for Future ResearchAlthough we have been encouraged by our results to date, there remain a numberof directions in which we must extend our approach before it can become a usefultool for scientists. As noted earlier, we envision an interactive discovery aidethat lets the user focus the system's attention on those portions of the modelit should attempt to improve. To this end, we need a graphical interface thatsupports marking of parameters, intrinsic properties, and equations that can berevised, as well as tools for displaying errors as a function of space, time, andpredictive variables.In addition, the current system is limited to revising the parameters or formof one equation in the model at a time, as well as requiring some handcraftingto encode the equations as a neural network. Future versions should supportrevisions of multiple equations at the same time, preferably invoking the samevariants of backpropagation as we have used to date, and also provide a li-brary that maps functional forms to neural network encodings, so the systemcan transform the former into the latter automatically. We should also exploreusing other approaches to equation discovery, such as Todorovski and D�zeroski'sLaGramge, in place of the RF6 algorithm.Naturally, we also hope to evaluate our approach on its ability to improveother portions of the CASA model, as additional data becomes available. An-other test of generality would be application of the same methods to other sci-



13enti�c domains in which there already exist formal models that can be revised.In the longer term, we should evaluate our interactive system not only in itsability to increase the predictive accuracy of an existing model, but in terms ofthe satisfaction to scientists who use the system to that end.Another challenge that we have encountered in our research has been the needto translate the existing CASA model into a declarative form that our discoverysystem can manipulate. In response, another long-term goal involves developinga modeling language in which scientists can cast their initial models and carryout simulations, but that can also serve as the declarative representation forour discovery methods. The ability to automatically revise models places novelconstraints on such a language, but we are con�dent that the result will prove auseful aid to the discovery process.7 Concluding RemarksIn this paper, we addressed the computational task of improving an existing sci-enti�c model that is composed of numeric equations. We illustrated this problemwith an example model from the Earth sciences that predicts carbon productionas a function of temperature, sunlight, and other variables. We identi�ed threeactivities that can improve a model { revising an equation's parameters, alter-ing the values of an intrinsic property, and changing the functional form of anequation, then presented results for each type on an ecosystem modeling taskthat reduced the model's prediction error, sometimes substantially.Our research on model revision builds on previous work in numeric law dis-covery and qualitative theory re�nement, but it combines these two themes innovel ways to enable new capabilities. Clearly, we remain some distance fromour goal of an interactive discovery tool that scientists can use to improve theirmodels, but we have also taken some important steps along the path, and weare encouraged by our initial results on an important scienti�c problem.ReferencesChown, E., & Dietterich, T. G. (2000). A divide and conquer approach to learn-ing from prior knowledge. Proceedings of the Seventeenth International Confer-ence on Machine Learning (pp. 143{150). San Francisco: Morgan Kaufmann.Durbin, R. & Rumelhart, D. E. (1989). Product units: A computationally pow-erful and biologically plausible extension. Neural Computation, 1 , 133{142.Kokar, M. M. (1986). Determining arguments of invariant functional descrip-tions. Machine Learning, 1 , 403{422.Langley, P. (1979). Rediscovering physics with Bacon.3. Proceedings of the SixthInternational Joint Conference on Arti�cial Intelligence (pp. 505{507). Tokyo,Japan: Morgan Kaufmann.Langley, P. (1998). The computer-aided discovery of scienti�c knowledge. Pro-ceedings of the First International Conference on Discovery Science. Fukuoka,Japan: Springer.
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