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Abstract. Research on the computational discovery of numeric equa-
tions has focused on constructing laws from scratch, whereas work on
theory revision has emphasized qualitative knowledge. In this paper, we
describe an approach to improving scientific models that are cast as sets
of equations. We review one such model for aspects of the Earth ecosys-
tem, then recount its application to revising parameter values, intrinsic
properties, and functional forms, in each case achieving reduction in er-
ror on Earth science data while retaining the communicability of the
original model. After this, we consider earlier work on computational
scientific discovery and theory revision, then close with suggestions for
future research on this topic.

1 Research Goals and Motivation

Research on computational approaches to scientific knowledge discovery has a
long history in artificial intelligence, dating back over two decades (e.g., Lan-
gley, 1979; Lenat, 1977). This body of work has led steadily to more powerful
methods and, in recent years, to new discoveries deemed worth publication in
the scientific literature, as reviewed by Langley (1998). However, despite this
progress, mainstream work on the topic retains some important limitations.
One drawback is that few approaches to the intelligent analysis of scientific
data can use available knowledge about the domain to constrain search for laws
or explanations. Moreover, although early work on computational discovery cast
discovered knowledge in notations familiar to scientists, more recent efforts have
not. Rather, influenced by the success of machine learning and data mining, many
researchers have adopted formalisms developed by these fields, such as decision
trees and Bayesian networks. A return to methods that operate on established
scientific notations seems necessary for scientists to understand their results.



Like earlier research on computational scientific discovery, our general ap-
proach involves defining a space of possible models stated in an established
scientific formalism, specifically sets of numeric equations, and developing tech-
niques to search that space. However, it differs from previous work in this area by
starting from an existing scientific model and using heuristic search to revise the
model in ways that improve its fit to observations. Although there exists some
research on theory refinement (e.g., Ourston & Mooney 1990; Towell, 1991),
it has emphasized qualitative knowledge rather than quantitative models that
relate continuous variables, which play a central role in many sciences.

In the pages that follow, we describe an approach to revising quantitative
models of complex systems. We believe that our approach is a general one ap-
propriate for many scientific domains, but we have focused our efforts on one
area certain aspects of the Earth ecosystem for which we have a viable model,
existing data, and domain expertise. We briefly review the domain and model
before moving on to describe our approach to knowledge discovery and model
revision. After this, we present some initial results that suggest our approach can
improve substantially the model’s fit to available data. We close with a discussion
of related discovery work and directions for future research.

2 A Quantitative Model of the Earth Ecosystem

Data from the latest generation of satellites, combined with readings from ground
sources, hold great promise for testing and improving existing scientific models of
the Earth’s biosphere. One such model, CASA, developed by Potter and Klooster
(1997, 1998) at NASA Ames Research Center, accounts for the global produc-
tion and absorption of biogenic trace gases in the Earth atmosphere, as well as
predicting changes in the geographic patterns of major vegetation types (e.g.,
grasslands, forest, tundra, and desert) on the land.

CASA predicts, with reasonable accuracy, annual global fluxes in trace gas
production as a function of surface temperature, moisture levels, and soil prop-
erties, together with global satellite observations of the land surface. The model
incorporates difference equations that represent the terrestrial carbon cycle, as
well as processes that mineralize nitrogen and control vegetation type. These
equations describe relations among quantitative variables and lead to changes in
the modeled outputs over time. Some processes are contingent on the values of
discrete variables, such as soil type and vegetation, which take on different val-
ues at different locations. CASA operates on gridded input at different levels of
resolution, but typical usage involves grid cells that are eight kilometers square,
which matches the resolution for satellite observations of the land surface.

To run the CASA model, the difference equations are repeatedly applied to
each grid cell independently to produce new variable values on a daily or monthly
basis, leading to predictions about how each variable changes, at each location,
over time. Although CASA has been quite successful at modeling Earth’s ecosys-
tem, there remain ways in which its predictions differ from observations, suggest-
ing that we invoke computational discovery methods to improve its ability to fit
the data. The result would be a revised model, cast in the same notation as the



Table 1. Variables used in the NPPc portion of the CASA ecosystem model.

NPPc is the net plant production of carbon at a site during the year.
E is the photosynthetic efficiency at a site after factoring various sources of stress.
T1 is a temperature stress factor (0 < T'1 < 1) for cold weather.

T2 is a temperature stress factor (0 < T2 < 1), nearly Gaussian in form but falling
off more quickly at higher temperatures.

W is a water stress factor (0.5 < W < 1) for dry regions.

Topt is the average temperature for the month at which MON-FAS-NDVT takes on
its maximum value at a site.

Tempc is the average temperature at a site for a given month.

EET is the estimated evapotranspiration (water loss due to evaporation and transpi-
ration) at a site.

PET is the potential evapotranspiration (water loss due to evaporation and transpi-
ration given an unlimited water supply) at a site.

PET-TW-M is a component of potential evapotranspiration that takes into account
the latitude, time of year, and days in the month.

A is a polynomial function of the annual heat index at a site.
AHI is the annual heat index for a given site.

MON-FAS-NDVT is the relative vegetation greenness for a given month as measured
from space.

IPAR is the energy from the sun that is intercepted by vegetation after factoring in
time of year and days in the month.

FPAR-FAS is the fraction of energy intercepted from the sun that is absorbed pho-
tosynthetically after factoring in vegetation type.

MONTHLY-SOLAR is the average solar irradiance for a given month at a site.
SOL-CONVER is 0.0864 times the number of days in each month.
UMD-VEG is the type of ground cover (vegetation) at a site.

original one, that incorporates changes which are interesting to Earth scientists
and which improve our understanding of the environment.

Because the overall CASA model is quite complex, involving many variables
and equations, we decided to focus on one portion that lies on the model’s
‘fringes’ and that does not involve any difference equations. Table 1 describes the
variables that occur in this submodel, in which the dependent variable, NPPc,
represents the net production of carbon. As Table 2 indicates, the model predicts
this quantity as the product of two unobservable variables, the photosynthetic
efficiency, E, at a site and the solar energy intercepted, IPAR, at that site.

Photosynthetic efficiency is in turn calculated as the product of the maximum
efficiency (0.56) and three stress factors that reduce this efficiency. One stress
term, T2, takes into account the difference between the optimum temperature,
Topt, and actual temperature, Tempc, for a site. A second factor, T1, involves



Table 2. Equations used in the NPPc portion of the CASA ecosystem model.

NPPc =3 . max (E:IPAR,0)
E=056-T1 -T2 - W
T1 = 0.8 + 0.02 - Topt — 0.0005 - Topt?
T2 = 1.18/[(1 + 80.2-(Topt7Tempc710)) (14 60.3-(TempC—T0pt—10))]
W =0.5 + 0.5 - EET/PET
PET = 1.6 - (10 - Tempc / AHI)4 - PET-TW-M if Tempc > 0
PET = 0 if Tempc < 0
A = 0.000000675 - AHI® — 0.0000771- AHI? +0.01792 - AHI + 0.49239
IPAR = 0.5 - FPAR-FAS - MONTHLY-SOLAR. - SOL-CONVER
FPAR-FAS = min((SR-FAS — 1.08)/SRDIFF(UMD-VEG), 0.95)
SR-FAS = — (MON-FAS-NDVT + 1000) / (MON-FAS-NDVT — 1000)

the nearness of Topt to a global optimum for all sites, reflecting the intuition
that plants which are better adapted to harsh temperatures are less efficient
overall. The third term, W, represents stress that results from lack of moisture as
reflected by EET, the estimated water loss due to evaporation and transpiration,
and PET, the water loss due to these processes given an unlimited water supply.
In turn, PET is defined in terms of the annual heat index, AHI, for a site, and
PET-TW-M, another component of potential evapotranspiration.

The energy intercepted from the sun, IPAR, is computed as the product
of FPAR-FAS, the fraction of energy absorbed photosynthetically for a given
vegetation type, MONTHLY-SOLAR, the average radiation for a given month,
and SOL-CONVER, the number of days in that month. FPAR-FAS is a function
of MON-FAS-NDVI, which indicates relative greenness at a site as observed from
space, and SRDIFF, an intrinsic property that takes on different numeric values
for different vegetation types as specified by the discrete variable UMD-VEG.

Of the variables we have mentioned, NPPc, Tempc, MONTHLY-SOLAR,
SOL-CONVER, MON-FAS-NDVI, and UMD-VEG are observable. Three addi-
tional terms — EET, PET-TW-M, and AHI — are defined elsewhere in the model,
but we assume their definitions are correct and thus we can treat them as observ-
ables. The remaining variables are unobservable and must be computed from the
others using their definitions. This portion of the model also contains a number
of numeric parameters, as shown in the equations in Table 2.

3 An Approach to Quantitative Model Revision

As noted earlier, our approach to scientific discovery involves refining models
like CASA that involve relations among quantitative variables. We adopt the
traditional view of discovery as heuristic search through a space of models, with
the search process directed by candidates’ ability to fit the data. However, we
assume this process starts not from scratch, but rather with an existing model,



and the search operators involve making changes to this model, rather than
constructing entirely new structures.

Our long-term goal is not to automate the revision process, but instead to
provide an interactive tool that scientists can direct and use to aid their model
development. As a result, the approach we describe in this section addresses
the task of making local changes to a model rather than carrying out global
optimization, as assumed by Chown and Dietterich (2000). Thus, our software
takes as input not only observations about measurable variables and an existing
model stated as equations, but also information about which portion of the
model should be altered. The output is a revised model that fits the observed
data better than the initial one.

Below we review two discovery algorithms that we utilize to improve the
specified part of a model, then describe three distinct types of revision they
support. We consider these in order of increasing complexity, starting with simple
changes to parameter values, moving on to revisions in the values of intrinsic
properties, and ending with changes in an equation’s functional form.

3.1 The RF5 and RF6 Discovery Algorithms

Our approach relies on RF5 and RF6, two algorithms for discovering numeric
equations described Saito and Nakano (1997, 2000). Given data for some contin-
uous variable y that is dependent on continuous predictive variables x1, ..., x,,
the RF5 system searches for multivariate polynomial equations of the form

J K J K
Yy = wg + Z w; H ﬂf;:jk = wo + ij exp (Z Wik ln(azk)> s (1)
k=1 j=1 k=1

i=1

Such functional relations subsume many of the numeric laws found by previous
computational discovery systems like BACcON (Langley, 1979) and FAHRENHEIT
(Zytkow, Zhu, & Hussam, 1990).

RF5’s first step involves transforming a candidate functional form with J
summed terms into a three-layer neural network based on the rightmost form
of expression (1), in which the K hidden nodes in this network correspond to
product units (Durbin & Rumelhart, 1989). The system then carries out search
through the weight space using the BPQ algorithm, a second-order learning tech-
nique that calculates both the descent direction and the step size automatically.

This process halts when it finds a set of weights that minimize the squared
error on the dependent variable y. RF5 runs the BPQ method on networks with
different numbers of hidden units, then selects the one that gives the best score
on an MDL metric. Finally, the program transforms the resulting network into
a polynomial equation, with weights on hidden units becoming exponents and
other weights becoming coefficients.

The RF6 algorithm extends RF5 by adding the ability to find conditions on
a numeric equation that involve nominal variables, which it encodes using one
input variable for each nominal value. To this end, the system first generates one
such condition for each training case, then utilizes k-means clustering to generate



a smaller set of more general conditions, with the number of clusters determined
through cross validation. Finally, RF6 invokes decision-tree induction to con-
struct a classifier that discriminates among these clusters, which it transforms
into rules that form the nominal conditions on the polynomial equation that
RF5 has generated.

3.2 Three Types of Model Refinement

There exist three natural types of refinement within the class of models, like
CASA, that are stated as sets of equations that refer to unobservable variables.
These include revising the parameter values in equations, altering the values for
an intrinsic property, and changing the functional form of an existing equation.

Improving the parameters for an equation is the most straightforward pro-
cess. The NPPc portion of CASA contains some parameterized equations that
our Earth science team members believe are reliable, like that for computing the
variable A from AHI, the annual heat index. However, it also includes equations
with parameters about which there is less certainty, like the expression that pre-
dicts the temperature stress factor T2 from Tempc and Topt. Our approach to
revising such parameters relies on creating a specialized neural network that en-
codes the equation’s functional form using ideas from RF5, but also including a
term for the unchanged portion of the model. We then run the BPQ algorithm to
find revised parameter values, initializing weights based on those in the model.

We can utilize a similar scheme to improve the values for an intrinsic property
like SRDIFF that the model associates with the discrete values for some nominal
variable like UMD-VEG (vegetation type). We encode each nominal term as a
set of dummy variables, one for each discrete value, making the dummy variable
equal to one if the discrete value occurs and zero otherwise. We introduce one
hidden unit for the intrinsic property, with links from each of the dummy vari-
ables and with weights that correspond to the intrinsic values associated with
each discrete value. To revise these weights, we create a neural network that in-
corporates the intrinsic values but also includes a term for the unchanging parts
of the model. We can then run BPQ to revise the weights that correspond to
intrinsic values, again initializing them to those in the initial model.

Altering the form of an existing equation requires somewhat more effort, but
maps more directly onto previous work in equation discovery. In this case, the
details depend on the specific functional form that we provide, but because we
have available the RF5 and RF6 algorithms, the approach supports any of the
forms that they can discover or specializations of them. Again, having identified
a particular equation that we want to improve, we create a neural network
that encodes the desired form, then invoke the BPQ algorithm to determine
its parametric values, in this case initializing the network weights randomly.

This approach to model refinement supports changes to only one equation or
intrinsic property at a time, but this is consistent with the interactive process
described earlier. We envision the scientist identifying a portion of the model
that he thinks could be better, running one of the three revision methods to
improve its fit to the data, and repeating this process until he is satisfied.



4 Initial Results on Ecosystem Data

In order to evaluate our approach to scientific model revision, we utilized data
relevant to the NPPc model available to the Earth science members of our team.
These data consisted of observations from 303 distinct sites with known vegeta-
tion type and for which measurements of Tempc, MON-FAS-NDVI, MONTHLY-
SOLAR, SOL-CONVER, and UMD-VEG were available for each month during
the year. In addition, other portions of CASA were able to compute values for the
variables AHI, EET, and PET-TW-M. The resulting 303 training cases seemed
sufficient for initial tests of our revision methods, so we used them to drive a
variety of changes to the handcrafted model of carbon production.

4.1 Results on Parameter Revision

Our Earth science team members identified the equation for T2, one of the
temperature stress variables, as a likely candidate for revision. As noted earlier,
the handcrafted expression for this term was

T2 = 18/[(1 + 60.2(Topt7Temp0710))(1 + 670.3(Tempc7Topt710))] 7

which produces a Gaussian-like curve that is slightly assymetrical. This re-
flects the intuition that photosynthetic efficiency will decrease when temperature
(Tempc) is either below or above the optimal (Topt).

To improve upon this equation, we defined x = Topt — Tempc as an interme-
diate variable and recast the expression for T2 as the product of two sigmoidal
functions of the form o(a) = 1/(1+ exp(—a)) and a parameter. We transformed
these into a neural network and used BPQ to minimize the error function

Fi = Zsample (NPPc = 3 oneno - 0(vio +v11 - @) - 0(v20 — 021 - T) -Rest)2 )

over the parameters {wp, v19,v11, V20, V21 }, where Rest = 0.56 - T1- W - IPAR.
The resulting equation generated in this manner was

T9 — 180/[(1 + 60.05(Topt7Temp0710.8)(1 + 670.03(T6mpchopt790.33)] ,
which has reasonably similar values to the original ones for some parameters but
quite different values for others.

The root mean squared error (RMSE) for the original model on the available
data was 467.910. In contrast, the error for the revised model was 457.757 on
the training data and 461.466 using leave-one-out cross validation. Thus, RF6’s
modification of parameters in the T2 equation produced slightly more than one
percent reduction in overall model error, which is somewhat disappointing.

However, inspection of the resulting curves reveals a more interesting picture.
Plotting the temperature stress factor T2 using the revised equations as a func-
tion of the difference Topt — Tempc still gives a Gaussian-like curve, but within
the effective range (from —30 to 30 Celsius) its values decrease monotonically.
This seems counterintuitive but interesting from an Earth science perspective,



as it suggests this stress factor has little influence on NPPc. Moreover, the origi-
nal equation for T2 was not well grounded in first principles of plant physiology,
making empirical improvements of this sort beneficial to the modeling enterprise.

As another candidate for parameter revision, we selected the PET equation,

PET = 1.6 - (10 - max(Tempc, 0) / AHI)* - PET-TW-M |

which calculates potential water loss due to evaporation and transpiration given
an unlimited water supply. By transforming this expression into

PET = exp(In(1.6) + A -In(10)) - (max(Tempc,0) / AHI)? - PET-TW-M

and replacing the parameter values In(1.6) and In(10) with the variables vg and
v1, we constructed a neural network and used BP(Q for error minimization. When
transforming the trained network back into the original form, the equation that
resulted was

PET = 1.56 - (9.16 - max(Tempc,0) / AHD* - PET-TW-M ,

which has values that are very similar to those in the original model’s equation.

Moreover, since the RMSE for the obtained model was 464.358 on the train-
ing data and 467.643 using leave-one-out cross validation, the revision process
did not improve the model’s accuracy substantially. However, since the PET
equation is based on Thornthwaite’s (1948) method, which has been used con-
tinuously for over 50 years, we should not be overly surprised at this negative
result. Indeed, we are encouraged by the fact that our approach did not revise
parameters that have stood the test of time in Earth science.

4.2 Results on Intrinsic Value Revision

Another portion of the NPPc model that held potential for revision concerns
the intrinsic property SRDIFF associated with the vegetation type UMD-VEG.
For each site, the latter variable takes on one of 11 nominal values, such as
grasslands, forest, tundra, and desert, each with an associated numeric value for
SRDIFF that plays a role in the FPAR-FAS equation. This gives 11 parameters
to revise, which seems manageable given the number of observations available.
As outlined earlier, to revise these intrinsic values, we introduced one dummy
variable, UMD-VEGy, for each vegetation type such that UMD-VEG; = 1 if
UMD-VEG = k and 0 otherwise. We then defined SRDIFF(UMD-VEG) as
exp(—=Y_,vx - UMD-VEGy) and, since SRDIFF’s value is independent of the
month, we used BPQ to minimize, over the weights {vy}, the error function

Fo =i (NPPc — exp(3", 5 - UMD-VEGy) - Rest)” |

where Rest =Y E-0.5-(SR-FAS—1.08)-MONTHLY-SOLAR-SOL-CONVER.
Table 3 shows the initial values for this intrinsic property, as set by the CASA
developers, along with the revised values produced by the above approach when



Table 3. Original and revised values for the SRDIFF intrinsic property, along with
the frequency for each vegetation type.

vegetationtype A B C D E F G H I J K

original 3.06 4.35 4.35 4.05 5.09 3.06 4.05 4.05 4.05 5.09 4.05
revised 2.57 477 2.20 3.99 3.70 3.46 2.34 0.34 2.72 3.46 1.60
clustered 2.42 3.75 2.42 3.75 3.75 3.75 2.42 0.34 2.42 3.75 2.42
frequency 33 89 03 36 21.1 19.1 15.2 3.319.1 23 3.6

we fixed other parts of the NPPc model. The most striking result is that the
revised intrinsic values are nearly always lower than the initial values. The RMSE
for the original model was 467.910, whereas the error using the revised values
was 432.410 on the training set and 448.376 using cross validation. The latter
constitutes an error reduction of over four percent, which seems substantial.

However, since the original 11 intrinsic values were grouped into only four
distinct values, we applied RF6’s clustering procedure over the trained neural
network to group the revised values in the same manner. We examined the effect
on error rate as we varied the number of clusters from one to five; as expected,
the training RMSE decreased monotonically, but the cross-validation RMSE was
minimized for three clusters of values. The estimated error for this revised model
is slightly better than for the one with 11 distinct values.

Again, the clustered values are nearly always lower than the initial ones, a
result that is certainly interesting from an Earth science viewpoint. We suspect
that measurements of NPPc and related variables from a wider range of sites
would produce intrinsic values closer to those in the original model. However,
such a test must await additional observations and, for now, empirical fit to the
available data should outweigh the theoretical basis for the initial settings.

In another approach to revising intrinsic values, we retained the original
grouping of vegetation types into sets, with each type in a given set having the
same value. We utilized a weight-sharing technique to encode this background
knowledge in a neural network. For example, let v4 and vr be weights corre-
sponding to the SRDIFF values for vegetation types A and F, respectively; to
ensure these values remained the same, we treated them as a single weight, say
var. Here we can see that BPQ calculates the derivative of the error function
over v4p as a sum of the individual derivatives over v4 and v,

OF, OF, 0F,

duap  Ova  Oup

In the trained neural network, the derivative over v4p becomes zero, but there
is no guarantee that each derivative over v4 or vy will do so. Therefore, we can
treat the sum of the absolute values for derivatives over shared weights, like v 4
and v, as a criterion for the ‘unlikeness” among the elements of such a grouping.

Table 4 shows the revised values for the intrinsic property SRDIFF that result
from this approach, along with values for the unlikeness criterion defined above.
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Table 4. Original and revised values, using the original groupings, for the SRDIFF
intrinsic property, along with the frequency and unlikeness for each vegetation group.

vegetation type AVF BvC Ev] DVGVHVIVK
original 3.06 4.35 5.09 4.05
revised 2.23 3.27 2.54 1.81
frequency 224 9.2 234 44.9
unlikeness 26.1 0.3 2.3 13.6

As before, the obtained intrinsic values are always lower than the initial ones,
and our criterion suggests that the group containing the vegetation types A and
F has the least coherence. The RMSE for the revised model was 442.782 on the
training data and 449.097 using leave-one-out cross validation, again indicating
about four percent reduction in the model’s overall error.

4.3 Results on Revising Equation Structure

We also wanted to demonstrate our approach’s ability to improve the functional
form of the NPPc model. For this purpose, we selected the equation for photo-
synthetic efficiency,

E=056-T1-T2-W ,

which states that this term is a product of the water stress term, W, and the two
temperature stress terms, T1 and T2. Because each stress factor takes on values
less than one, multiplication has the effect of reducing photosynthetic efficiency
E below the maximum 0.56 possible (Potter & Klooster, 1998).

Since E is calculated as a simple product of the three variables, one natural
extension was to consider an equation that included exponents on these terms.
To this end, we borrowed techniques from the RF5 system to create a neural
network for such an expression, then used BP(Q to minimize the error function

Fs =4 NPPc =3 - T1% - T2% . W .TPAR)® |

over the parameters {ug, u1,us,us}, which assumes the equations that predict
IPAR remain unchanged. We initialized uo to 0.56 and the other parameters
to 1.0, as in the original model, and constrained the latter to be positive. The
revised equation found in this manner,

E =0.521- Tl0.00 X T20.03 X W0.00 ,

has a small exponent for T2 and zero exponents for T1 and W, suggesting the
former influences photosynthetic efficiency in minor ways and the latter not at
all. On the available data, the root mean squared error for the original model
was 467.910. In contrast, the revised model has an RMSE of 443.307 on the
training set and an RMSE of 446.270 using cross validation. Thus, the revised
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equation produces a substantially better fit to the observations than does the
original model, in this case reducing error by almost five percent.

With regards to Earth science, these results are plausible and the most in-
teresting of all, as they suggest that the T1 and W stress terms are unnecessary
for predicting NPPc. One explanation is that the influence of these factors is al-
ready being captured by the NDVI measure available from space, for which the
signal-to-noise ratio has been steadily improving since CASA was first developed.

These results encouraged us to explore more radical revisions to the func-
tional form for photosynthetic efficiency. Thus, we told our system to consider a
form that omitted the three stress factors but that included the four variables —
Topt, Tempc, EET, and PET — that appear in their definitions:

E = v - exp(—0.5- (v; - Topt + vs - Tempc + v3 - EET 4 v4 - PET + v5)?) .

This Gaussian-like activation function satisfies the constraint that E is positive
and less than one. Running BPQ to minimize the error function over {v,...vs}
produced the equation

E = 0.57 - exp(—0.5 - (=0.04 - Topt + 0.03 - Tempc — 0.03 - EET + 0.01 - PET)?)

where we eliminated the parameter v; because its value was —0.003. The RMSE
for the revised model was 439.101 on the training data and 444.470 using leave-
one-out cross validation, indicating more than five percent reduction in error.

These results are very similar to those from our first approach, which pro-
duced a cross validation RMSE of 446.270. In this case, the revised model is
simpler in that it defines E directly in terms of Topt, Tempc, EET, and PET,
rather than relying on the theoretical terms T1, T2, and W, two of which pro-
vide no predictive power. On the other hand, the original form for E had a clear
theoretical interpretation, whereas the new version does not. In such situations,
the final decision should be left to domain scientists, who are best suited to
balance a model’s simplicity against its interepretability.

5 Related Research on Computational Discovery

Our research on computational scientific discovery draws on two previous lines of
work. One approach, which has an extended history within artificial intelligence,
addresses the discovery of explicit quantitative laws. Early systems for numeric
law discovery like BAcoN (Langley, 1979; Langley et al., 1987) carried out a
heuristic search through a space of new terms and simple equations. Numerous
successors like FAHRENHEIT (Zytkow et al., 1990) and RF5 (Saito & Nakano,
1997) incorporate more sophisticated and more extensive search through a larger
space of numeric equations.

The most relevant equation discovery systems take into account domain
knowledge to constrain the search for numeric laws. For example, Kokar’s (1986)
CoOPER utilized knowledge about the dimensions of variables to focus attention
and, more recently, Washio and Motoda’s (1998) SDS extends this idea to sup-
port different types of variables and sets of simultaneous equations. Todorovski
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and Dzeroski’s (1997) LAGRAMGE takes a quite different approach, using do-
main knowledge in the form of context-free grammars to constrain its search
through a space of differential equation models that describe temporal behavior.

Although research on computational discovery of numeric laws has empha-
sized communicable scientific notations, it has focused on constructing such laws
rather than revising existing ones. In contrast, another line of research has ad-
dressed the refinement of existing models to improve their fit to observations.
For example, Ourston and Mooney (1990) developed a method that used train-
ing data to revise models stated as sets of propositional Horn clauses. Towell
(1991) reports another approach that transforms such models into multilayer
neural networks, then uses backpropagation to improve their fit to observations,
much as we have done for numeric equations. Work in this paradigm has em-
phasized classification rather than regression tasks, but one can view our work
as adapting the basic approach to equation discovery.

We should also mention related work on the automated improvement of
ecosystem models. Most Al work on Earth science domains focuses on learn-
ing classifiers that predict vegetation from satellite measures like NDVI, as con-
trasted with our concern for numeric prediction. Chown and Dietterich (2000)
describe an approach that improves an existing ecosystem model’s fit to contin-
uous data, but their method only alters parameter values and does not revise
equation structure. On another front, Schwabacher and Langley (2001) use a
rule-induction algorithm to discover piecewise linear models that predict NDVI
from climate variables, but their method takes no advantage of existing models.

6 Directions for Future Research

Although we have been encouraged by our results to date, there remain a number
of directions in which we must extend our approach before it can become a useful
tool for scientists. As noted earlier, we envision an interactive discovery aide
that lets the user focus the system’s attention on those portions of the model
it should attempt to improve. To this end, we need a graphical interface that
supports marking of parameters, intrinsic properties, and equations that can be
revised, as well as tools for displaying errors as a function of space, time, and
predictive variables.

In addition, the current system is limited to revising the parameters or form
of one equation in the model at a time, as well as requiring some handcrafting
to encode the equations as a neural network. Future versions should support
revisions of multiple equations at the same time, preferably invoking the same
variants of backpropagation as we have used to date, and also provide a li-
brary that maps functional forms to neural network encodings, so the system
can transform the former into the latter automatically. We should also explore
using other approaches to equation discovery, such as Todorovski and Dzeroski’s
LAGRAMGE, in place of the RF6 algorithm.

Naturally, we also hope to evaluate our approach on its ability to improve
other portions of the CASA model, as additional data becomes available. An-
other test of generality would be application of the same methods to other sci-
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entific domains in which there already exist formal models that can be revised.
In the longer term, we should evaluate our interactive system not only in its
ability to increase the predictive accuracy of an existing model, but in terms of
the satisfaction to scientists who use the system to that end.

Another challenge that we have encountered in our research has been the need
to translate the existing CASA model into a declarative form that our discovery
system can manipulate. In response, another long-term goal involves developing
a modeling language in which scientists can cast their initial models and carry
out simulations, but that can also serve as the declarative representation for
our discovery methods. The ability to automatically revise models places novel
constraints on such a language, but we are confident that the result will prove a
useful aid to the discovery process.

7 Concluding Remarks

In this paper, we addressed the computational task of improving an existing sci-
entific model that is composed of numeric equations. We illustrated this problem
with an example model from the Earth sciences that predicts carbon production
as a function of temperature, sunlight, and other variables. We identified three
activities that can improve a model — revising an equation’s parameters, alter-
ing the values of an intrinsic property, and changing the functional form of an
equation, then presented results for each type on an ecosystem modeling task
that reduced the model’s prediction error, sometimes substantially.

Our research on model revision builds on previous work in numeric law dis-
covery and qualitative theory refinement, but it combines these two themes in
novel ways to enable new capabilities. Clearly, we remain some distance from
our goal of an interactive discovery tool that scientists can use to improve their
models, but we have also taken some important steps along the path, and we
are encouraged by our initial results on an important scientific problem.
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