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We propose a new method, parametric embedding (PE), that embeds ob-
jects with the class structure into a low-dimensional visualization space.
PE takes as input a set of class conditional probabilities for given data
points and tries to preserve the structure in an embedding space by min-
imizing a sum of Kullback-Leibler divergences, under the assumption
that samples are generated by a gaussian mixture with equal covariances
in the embedding space. PE has many potential uses depending on the
source of the input data, providing insight into the classifier’s behav-
ior in supervised, semisupervised, and unsupervised settings. The PE
algorithm has a computational advantage over conventional embedding
methods based on pairwise object relations since its complexity scales
with the product of the number of objects and the number of classes.
We demonstrate PE by visualizing supervised categorization of Web
pages, semisupervised categorization of digits, and the relations of words
and latent topics found by an unsupervised algorithm, latent Dirichlet
allocation.
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1 Introduction

Recently there has been great interest in algorithms for constructing low-
dimensional feature-space embeddings of high-dimensional data sets.
These algorithms seek to capture some aspect of the data set’s intrinsic
structure in a low-dimensional representation that is easier to visualize or
more efficient to process by other learning algorithms. Typical embedding
algorithms take as input a matrix of data coordinates in a high-dimensional
ambient space (e.g., PCA; Jolliffe, 1980) or a matrix of metric relations be-
tween pairs of data points (MDS; Torgerson, 1958), Isomap (Tenenbaum,
de Silva, & Langford, 2000), or stochastic neighbor embedding (SNE) (Hin-
ton & Roweis, 2002). The algorithms generally attempt to map nearby input
points onto nearby points in the output embedding.

Here we consider a different sort of embedding problem with two sets of
points X = {x1, . . . , xN} and C = {c1, . . . , cK }, which we call objects (X) and
classes (C). The input consists of conditional probabilities p(ck |xn) associat-
ing each object xn with each class ck . Many kinds of data take this form: for a
classification problem, C may be the set of classes and p(ck |xn) the posterior
distribution over these classes for each object xn; in a marketing context,
C might be a set of products and p(ck |xn) the probabilistic preferences of a
consumer; or in language modeling, C might be a set of semantic topics, and
p(ck |xn) the distribution over topics for a particular document, as produced
by a method like latent Dirichlet allocation (LDA; Blei, Ng, & Jordan, 2003).
Typically the number of classes is much smaller than the number of objects,
K � N.

We seek a low-dimensional embedding of both objects and classes such
that the distance between object xn and class ck is monotonically related
to the probability p(ck |xn). This embedding simultaneously represents not
only the relations between objects and classes, but also the relations within
the set of objects and within the set of classes–each defined in terms of
relations to points in the other set. That is, objects that tend to be associated
with the same classes should be embedded nearby, as should classes that
tend to have the same objects associated with them. Our primary goals are
visualization and structure discovery, so we typically work with two- or
three-dimensional embeddings.

Object-class embeddings have many potential uses, depending on the
source of the input data. If p(ck |xn) represents the posterior probabilities
from a supervised Bayesian classifier, an object-class embedding provides
insight into the behavior of the classifier: how well separated the classes
are, where the errors cluster, whether there are clusters of objects that slip
through a crack between two classes, which objects are not well captured
by any class, and which classes are intrinsically most confusable with each
other. Answers to these questions could be useful for improved classifier
design. The probabilities p(ck |xn) may also be the product of unsupervised
or semisupervised learning, where the classes ck represent components in
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a generative mixture model. Then an object class embedding shows how
well the intrinsic structure of the objects (and, in a semisupervised setting,
any given labels) accords with the clustering assumptions of the mixture
model.

Our specific formulation of the embedding problem assumes that each
class ck can be represented by a spherical gaussian distribution in the embed-
ding space, so that the embedding as a whole represents a simple gaussian
mixture model for each object xn. We seek an embedding that matches the
conditional probabilities for each object under this gaussian mixture model
to the input probabilities p(ck |xn). Minimizing the Kullback-Leibler (KL)
divergence between these two probability distributions leads to an efficient
algorithm, which we call parametric embedding (PE).

The rest of this letter is organized as follows. In the next section, we
formulate PE, and in section 3, we describe the optimization procedures. In
section 4, we briefly review related work. In section 5, we compare PE with
conventional methods by visualizing classified Web pages. In section 6, we
visualize hand-written digits with two classifiers and show that PE can
visualize the characteristics of assumed models as well as given data. In
section 7, we show that PE can visualize latent topic structure discovered
by an unsupervised method. Finally, we present concluding remarks and
discussion of future work in section 8.

2 Parametric Embedding

Given as input conditional probabilities p(ck |xn), PE seeks an embedding
of objects with coordinates R = {rn}N

n=1 and classes with coordinates � =
{φk}K

k=1, such that p(ck |xn) is approximated as closely as possible by the
conditional probabilities under the assumption of a unit variance spherical
gaussian mixture model in the embedding space:

p(ck |rn) = p(ck) exp(− 1
2‖rn − φk‖2)∑K

l=1 p(cl ) exp(− 1
2‖rn − φl‖2)

, (2.1)

where ‖ · ‖ is the Euclidean norm in the embedding space. The dimension
of the embedding space is D, and rn ∈ RD, φk ∈ RD. When the conditional
probabilities p(ck |xn) arise as posterior probabilities from a mixture model,
we will also typically be given priors p(ck) as input; otherwise the p(ck)
terms above may be assumed equal. Assuming this model in the embed-
ding space, if the Euclidean distance between object rn and class φk is small,
the conditional probability p(ck |rn) becomes high. Therefore, we can under-
stand the input conditional probabilities from the visualization result.

It is natural to measure the degree of correspondence between in-
put probabilities and embedding space probabilities using a sum of KL
divergences for each object:

∑N
n=1 KL(p(ck |xn)‖p(ck |rn)). Minimizing this
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sum with regard to p(ck |rn) is equivalent to minimizing the objective func-
tion

E(R,�) = −
N∑

n=1

K∑
k=1

p(ck |xn) log p(ck |rn). (2.2)

Gradients of E with regard to rn and φk are, respectively, (see
appendix A),

∂ E
∂ rn

=
K∑

k=1

(p(ck |xn) − p(ck |rn))(rn − φk) (2.3)

∂ E
∂φk

=
N∑

n=1

(p(ck |xn) − p(ck |rn))(φk − rn). (2.4)

These learning rules have an intuitive interpretation (analogous to those
in SNE) as a sum of forces pulling or pushing rn(φk) depending on the
difference of conditional probabilities.

Importantly, the Hessian of E with regard to rn is a semipositive definite
matrix (see appendix B):

∂2 E
∂ rn∂ rT

n
=

K∑
k=1

p(ck |rn)φkφ
T
k −

(
K∑

k=1

p(ck |rn)φk

) (
K∑

k=1

p(ck |rn)φk

)T

,

(2.5)

since the right-hand side of equation 2.5 is exactly a covariance matrix,
where T represents transpose. When we add regularization terms to the
above objective function as follows,

J (R,�) = E(R,�) + ηr

N∑
n=1

‖rn‖2 + ηφ

K∑
k=1

‖φk‖2, ηr , ηφ > 0, (2.6)

the Hessian of the objective function J with regard to rn becomes positive
definite. Thus, we can find the globally optimal solution for R given �.

The visualization result depends on only initial coordinates of classes �,
not initial coordinates of objects R, since we can find the globally optimal
solution for R given �. On the other hand, the result of conventional non-
linear embedding methods (e.g., SNE) depends on the initial coordinates
of objects R. Therefore, we can get more stable results than conventional
nonlinear methods in the case that the number of classes is much smaller
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than the number of objects. The dependence on initial conditions was small
in our experiments (see section 5.4).

3 Algorithm

We minimize the objective function J by alternately optimizing R while fix-
ing �, and optimizing � while fixing R, until J converges. The optimization
procedure can be summarized as follows:

1. Initialize R and � randomly.

2. Calculate { ∂ J
∂ rn

}N
n=1.

3. If ‖ ∂ J
∂ rn

‖2 < εr for all n = 1, . . . , N, go to step 6.

4. Calculate modification vectors {�rn}N
n=1.

5. Update R by rn = rn + �rn, and go to step 2.

6. Calculate ∂ J
∂φ

.

7. If ‖ ∂ J
∂φ

‖2 < εφ , output R, � and terminate.

8. Calculate the modification vector �φ.

9. Update � by φ = φ + �φ, and go to step 2.

φ = (φT
1 , . . . ,φT

K )T and εr and εφ are convergence precisions. In step 1, if
we have information of classes, as the initial values for �, we may use the
result of other embedding methods such as MDS. From step 2 to step 5, R
is moved to minimize J , while � is fixed. In step 4, according to Newton
methods, �rn is calculated using the Hessian with regard to rn as follows:

�rn = −
(

∂2 J
∂ rn∂ rT

n

)−1
∂ J
∂ rn

. (3.1)

Since ∂2 J
∂ rn rT

n
is positive definite as described above, the inverse always exists.

From step 6 to step 9, � is moved to minimize J while R is fixed. In step 9,
according to quasi-Newton methods, �φ is calculated as follows:

�φ = −λG−1 ∂ J
∂φ

, (3.2)

where G−1 is the approximation of
(

∂2 J
∂φ∂φT

)−1
that is calculated by limited

memory Broyden-Fletcher-Goldfarb-Shanno (BFGS; Saito & Nakano, 1997).
and the step length λ is calculated so as to minimize the objective function.
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Steps 2 and 6 can be calculated using O(NK D) multiplications, and step 4
can be calculated using O(ND3) multiplications. The complexity of step 9
is O(K Ds), where s is the memory size in limited memory BFGS (Saito &
Nakano, 1997). Thus, the complexity of a single iteration of PE is O(NK ),
when we assume the dimension of the embedding space D and the memory
size s are constant. We found experimentally that the number of iterations
does not grow with N (see Figure 3).

4 Related Work

MDS and PCA are representative linear embedding methods. MDS em-
beds objects so as to preserve objects’ pair-wise distances, and PCA em-
beds objects so as to maximize variance. These methods can find globally
optimal embeddings and are computationally efficient, but they cannot
represent nonlinear structure. Recently, therefore, a number of nonlinear
embedding methods have been proposed, such as Isomap, local linear em-
bedding (Roweis & Saul, 2000), SNE, and connectivity-preserving embed-
ding (Yamada, Saito, & Ueda, 2003). However, these nonlinear embedding
methods are more computationally expensive than linear methods and PE.
Furthermore, these embedding methods do not use any class information.

Fisher linear discriminant analysis (FLDA; Fisher, 1950) and kernel dis-
criminant analysis (KDA) (Baudat & Anouar, 2000; Mika, Ratsch, Weston,
Schölkopf, & Muller, 1999) are embedding methods that use class infor-
mation. FLDA embeds objects so as to maximize between-class variance
and minimize within-class variance. KDA extends FLDA to nonlinear em-
bedding by using the kernel method. FLDA and KDA are dimensionality-
reduction methods for data given as a set of class-object pairs {xn, c(n)}N

n=1
(c(n) is the class label of a object xn). PE, by contrast, uses conditional class
probabilities rather than hard classifications.

PE can be seen as a generalization of stochastic neighbor embedding
(SNE). SNE corresponds to a special case of PE where the objects and
classes are identical sets. In SNE, the class conditional probabilities p(ck |xn)
are replaced by the probability p(xm|xn) of object xn under a gaussian dis-
tribution centered on xm. When the inputs (conditional probabilities) to PE
come from an unsupervised mixture model, PE performs unsupervised di-
mensionality reduction just like SNE. However, it has several advantages
over SNE and other methods for embedding a single set of data points
based on their pairwise relations. When class labels are available, it can
be applied in supervised or semisupervised modes. Because its computa-
tional complexity scales with NK , the product of the number of objects and
the number of classes, it can be applied efficiently to data sets with very
many objects (as long as the number of classes remains small). In this sense,
PE is closely related to landmark MDS (LMDS; de Silva & Tenenbaum,
2003), if we equate classes with landmarks, objects with data points,
and − log p(ck |xn) with the squared distances input to LMDS. However,
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LMDS lacks a probabilistic semantics and is suitable only for unsupervised
settings. The formulation of co-occurrence data embedding (Globerson,
Chechik, Pereira, & Tishby, 2005) is similar PE, but it embeds objects of
different types based on their co-occurrence statistics. PE embeds objects
and classes based on parametric models that describe their relationships.
Mei and Shelton (2006) also proposed a method to embed objects of differ-
ent types, but they focused on visualizing collaborative filtering data with
ratings.

5 Visualization of Labeled Data

In this section, we show how PE helps visualize labeled data, and compare
PE with conventional methods (MDS, Isomap, SNE, FLDA, KDA) in terms
of visualization, conditional probability approximation, and computational
complexity.

5.1 Experimental Setting. We visualized 5000 Japanese Web pages cat-
egorized into 10 topics by the Open Directory Project (http://dmoz.org),
where objects are Web pages and classes are topic categories. We omitted
pages with fewer than 50 words and those in multiple categories. Each page
is represented as a word frequency vector, and the class prior and condi-
tional probabilities are obtained from a naive Bayes model (McCallum, &
Nigam, 1998). trained on these data (see appendix C). The dimension of the
word frequency vector is 34,248. We used ηr = 0.1, ηφ = 50 for parameters
of PE.

5.2 Compared Methods. We used seven methods for comparison that
are closely related to PE:

� MDS1: The input is squared Euclidean distances between word fre-
quency vectors divided by L2 norm:

d MDS1
i j =

∥∥∥∥ xi

‖xi‖ − x j

‖xi‖
∥∥∥∥

2

. (5.1)

� MDS2: The input is squared Euclidean distances between conditional
probabilities:

d MDS2
i j =

K∑
k=1

(p(ck |xi ) − p(ck |x j ))2. (5.2)

� Isomap1: The input is squared Euclidean distances between word
frequency vectors divided by L2 norm as in equation 5.1. We used the
10-nearest neighbor approach to construct the graph.
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arts sports business computers health home recreation regional science online-shopping

(a) PE (b) MDS1

(c) MDS2 (d) Isomap1
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computers
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science

online-shopping

Figure 1: Visualizations of categorized Web pages. Each of the 5000 Web pages
is show by a particle, with shape indicating the page’s class.

� Isomap2: The input is KL divergences between conditional probabili-
ties:

d I soma p2
i j = KL(p(ck |xi )‖p(ck |x j )). (5.3)

We used the 10-nearest neighbor approach to construct the graph. The
input distance of Isomap need not be symmetric, since the shortest
path distances become symmetric even if the input is not symmetric
distance.

� SNE: The input is KL divergences between conditional probabilities
as in equation 5.3.

� FLDA: The input is word frequency vectors that are reduced to di-
mension 2000 by PCA and their classes. If the dimension of an object
is higher than N − K, the between-class covariance matrix becomes
singular, and FLDA is not applicable (small sample size problem;
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(f) SNE(e) Isomap2

(g) FLDA (h) KDA

Figure 1: Continued.

Fukunaga, 1990). We avoided this problem using PCA as in
Belhumeur, Hespanha, and Kriegman (1997).

� KDA: The input is word frequency vectors and their classes. We used
gaussian kernels with variance 1 and regularization as in Mika et al.
(1999). with regularization parameter 10−3.

5.3 Visualization Results. Figure 1a is the result of PE. Each point
represents a Web page, and the shape represents the class. Pages from the
same class cluster together, and closely related pairs of classes, such as
sports and health or computers and online shopping, are located nearby.
There are few objects near the sports cluster, so sports pages are easy to
distinguish from others. The regional cluster is central and diffuse, and
there are many objects from other classes mixed in with it; regional is
apparently a vague topic. These can be confirmed by F-measure for each
class (see Table 1), which is the harmonic mean of precision and recall. The
precision of class ck is the ratio of the number of objects correctly estimated
at class ck compared to the total number of objects estimated at class ck , and
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Table 1: F-Measure for Each Class.

Arts Sports Business Computers Health

0.973 0.978 0.929 0.924 0.967

Home Recreation Regional Science Online Shopping

0.957 0.958 0.909 0.964 0.941

the recall of class ck is the ratio of the number of objects correctly estimated
at class ck compared to the total number of objects classified into class ck .
The estimated class is the class that has the highest conditional probability.
The high F-measure of sports reflects the easiness of the classification, and
the low F-measure of regional reflects the difficulty of the classification.
Furthermore, we can visualize not only the relations among classes but also
how pages relate to their classes. For example, pages that are located at the
center of a cluster are typical pages for the class, and pages that are located
between clusters have multiple topics. Some pages are located in the cluster
of different classes; these may be misclassified pages.

MDS1 and Isomap1 do not use class information; therefore, they yield
no clear class structure (see Figure 1b and 1d). Figure 1c is the result of
MDS2. Pages from the same class are embedded closely, but some classes
are overlapping, so we do not see the class structure as clearly as we
do with PE. In the result of Isomap2 and SNE (see Figures 1e and 1f),
we can clearly see the class structure as in PE. Figure 1g is the result of
FLDA. Since FLDA uses class information, pages are more class-clustered
than in MDS1. However many clusters are overlapping, and it is diffi-
cult to understand the relationships among classes. Linear embedding
methods cannot in general separate all the classes. Figure 1h is the re-
sult of KDA. All clusters are separated perfectly, and we can understand
the relationships among classes. However, little within-class structure is
visible.

5.4 Comparison on Conditional Probability Approximation. We eval-
uate the degree of conditional probability approximation quantitatively.
Since conditional probabilities are not given as inputs in MDS1, Isomap1,
FLDA, and KDA, we compare PE, MDS2, Isomap2, and SNE.

Let Xhigh
k (h) = {xhigh

k,1 , . . . , xhigh
k,h } be the set of h objects with the high-

est conditional probabilities p(ck |xn) in the class ck , and let Xclose
k (h) =

{xclose
k,1 , . . . , xclose

k,h } be the set of h objects closest to the class center φk in
the embedding space. If conditional probabilities are approximated per-
fectly, Xhigh

k (h) and Xclose
k (h) should be identical in each class ck , since high

posterior objects should be embedded close to the class. As a measure of
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Figure 2: Experimental comparisons of the degree of conditional probability
approximation. Each error bar of PE represents the standard deviation of 100
results with different initial conditions.

conditional probability approximation, we use the precision between
Xhigh

k (h) and Xclose
k (h) as follows:

prec(h) = 1
K

K∑
k=1

1
h

∣∣∣Xhigh
k (h) ∩ Xclose

k (h)
∣∣∣ , (5.4)

where | · | is the number of elements. MDS2, Isomap2, and SNE do not out-
put �. Here, we take the object that has the highest conditional probability
as a representative point of the class and define the coordinates of the class
ck to be the coordinates of this object (i.e., φk = rargn max p(ck |xn)).

Figure 2 shows precisions of PE, MDS2, Isomap2, and SNE as h goes
from 10 to 500. Each error bar of PE represents the standard deviation of
100 results with different initial conditions. By this measure, the condi-
tional probability approximation of PE is clearly better than those of the
other methods. In Isomap2 and SNE, precisions are low in small h. This is
because Isomap2 and SNE preserve not object-class relationships but ob-
jects’ pair-wise neighborhood relationships. In MDS2, precision goes down
as h increases. This is because classes are overlapping, as in Figure 1c.

5.5 Comparison on Computational Time. One of the main advantages
of PE is its efficiency. As described in section 3, the computational com-
plexity of a single iteration of PE is O(NK ). That is, the computational time
increases linearly with the number of objects. We evaluated the number of
iterations of PE experimentally. Figure 3 shows that the number of iterations
does not depend on the number of objects, where each error bar represents
the standard deviation of 1000 results with different initial conditions.
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Figure 3: The number of iterations of PE with 10 classes. Each error bar repre-
sents the standard deviation of 1000 results with different initial conditions.

MDS computes eigenvectors of the matrix B = − 1
2 H A2 H , where H =

I − 1
N 11T is the centering matrix and A is the distance matrix. If the input

of MDS is squared Euclidean distances (Ai j = ‖xi − x j‖2), the complexity
of MDS increases linearly with the number of objects by Lanczos methods
(Golub & Van Loan, 1996), since the matrix vector product of B = H XT XH
can be calculated using O(NV) multiplications, where V is the number
of nonzero elements in each row of X = (x1, . . . , xn). Isomap has O(N3)
complexity (de Silva & Tenenbaum, 2003). SNE has O(N2) complexity since
it uses objects’ pair-wise relationships. FLDA and KDA lead to generalized
eigenvalue problems, whose complexity is the order of the cube of matrix
size.

We measured computational time experimentally, varying the number
of objects from 500 to 5000, on a Xeon 3.2 GHz CPU, 2 GB memory PC.
Figure 4 shows the result. As a preprocessing step of FLDA, input vectors are
reduced by PCA to N − K dimensions if N ≤ 2000. The x-axis and the y-axis
show the logarithm of number of objects and the logarithm of computational
time (sec), respectively. The dotted line is the regression line in the log-log
plot. Note that preprocessing time (conditional probability estimation in PE,
MDS2, Isomap2, and SNE and dimensionality reduction by PCA in FLDA)
is omitted. Table 2 shows the slopes of regression lines. The slopes represent
how computational time increases with the number of objects. The results
are consistent with the theoretical computational complexities as described
above, even though they are not same since iterative methods are used in
all methods.

In the case of 5000 objects, the computational time of PE is 3.13 sec.
Even taking into account the preprocessing time of PE (2.33 sec), PE
is more efficient than Isomap1, Isomap2, SNE, FLDA, and KDA (with
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Table 2: Slopes of Regression Lines in Figure 4.

PE MDS1 MDS2 Isomap1 Isomap2 SNE FLDA KDA

0.749 0.770 0.834 2.722 2.824 2.232 2.898 2.998

computational times of 1593 sec, 704 sec, 1869 sec, 211 sec, and 6752 sec,
respectively).

5.6 Summary of Comparison. In our experiments, we showed that PE
approximates conditional probabilities well and is quite efficient compared
to conventional methods. MDS is also efficient but does not extract the class
structure. SNE and Isomap2 achieve results similar to those of PE but take
more time. FLDA and KDE are different from PE in input information and
also take more time.

6 Visualization of Classifiers

The utility of PE for analyzing classifier performance may best be illustrated
in a semisupervised setting, with a large unlabeled set of objects and a
smaller set of labeled objects. We fit a probabilistic classifier based on the
labeled objects, and we would like to visualize the behavior of the classifier
applied to the unlabeled objects, in a way that suggests how accurate the
classifier is likely to be and what kinds of errors it is likely to make.

We constructed a simple probabilistic classifier for 2558 handwritten
digits (classes 0–4) from the MNIST database. The classifier was based on a
mixture model for the density of each class, defined by selecting either 10
or 100 digits uniformly at random from each class and centering a fixed-
covariance gaussian (in pixel space) on each of these examples—essentially
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Figure 5: Parametric embeddings for handwritten digit classification. Each dot
represents the coordinates rn of one image. Boxed numbers represent the class
means φk . ×’s show labeled examples used to train the classifier. Images of
several unlabeled digits are shown for each class.

a soft nearest-neighbor method (see appendix D). The posterior distribution
over this classifier for all 2558 digits was submitted as input to PE.

The resulting embeddings allow us to predict the classifiers’ patterns of
confusions, calculated based on the true labels for all 2558 objects. Figure 5
shows embeddings for both 10 labels per class and 100 labels per class. In
both cases, we see five clouds of points corresponding to the five classes.
The clouds are elongated and oriented roughly toward a common center,
forming a star shape (also seen to some extent in our other applications).
Objects that concentrate their probability on only one class will lie as far
from the center of the plot as possible–ideally, even farther than the mean of
their class, because this maximizes their posterior probability on that class.
Moving toward the center of the plot, objects become increasingly confused
with other classes.

Relative to using only 10 labels per class, using 100 labels yields clusters
that are more distinct, reflecting better between-class discrimination. Also,
the labeled examples are more evenly spread throughout each cluster, re-
flecting more faithful within-class models and less overfitting. In both cases,
the 1 class is much closer than any other to the center of the plot, reflecting
the fact that instances of other classes tend to be mistaken for 1’s. Instances
of other classes near the 1 center also tend to look rather “one-like”–thinner
and more elongated. The dense cluster of points just outside the mean for
1 reflects the fact that 1’s are rarely mistaken for other digits. In Figure 5a,
the 0 and 3 distributions are particularly overlapping, reflecting that those
two digits are most readily confused with each other (apart from 1). The
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webbing between the diffuse 2 arm and the tighter 3 arm reflects the large
number of 2’s taken for 3’s. In Figure 5b, that webbing persists, consistent
with the observation that (again, apart from many mistaken responses of
1) the confusion of 2’s for 3’s is the only large-scale error these larger data
permit.

7 Visualization of Latent Structure of Unlabeled Data

In the applications above, PE was applied to visualize the structure of
classes based at least to some degree on labeled examples. The algorithm
can also be used in a completely unsupervised setting, to visualize the
structure of a probabilistic generative model based on latent classes. Here
we illustrate this application of PE by visualizing a semantic space of word
meanings: objects correspond to words, and classes correspond to topics
in a latent Dirichlet allocation (LDA) model (Blei et al., 2003) fit to a large
(more than 37,000 documents and more than 12,000,000 word tokens) cor-
pus of educational materials for first grade to college (TASA). The problem
of mapping a large vocabulary is particularly challenging and, with over
26,000 objects (word types), prohibitively expensive for pairwise methods.
Again, PE solves for the configuration shown in about a minute.

In LDA (not to be confused with FLDA), each topic defines a prob-
ability distribution over word types that can occur in a document. This
model can be inverted to give the probability that topic ck was respon-
sible for generating word xn; these probabilities p(ck |xn) provide the in-
put needed to construct a space of word and topic meanings in PE (see
appendix E).

More specifically, we fit a 50-topic LDA model to the TASA corpus.
Then, for each word type, we computed its posterior distribution restricted
to a subset of five topics and input these conditional probabilities to PE
(with N = 26, 243, K = 5). Figure 6 shows the resulting embedding. As
with the embeddings in Figures 1 and 2, the topics are arranged roughly
in a star shape, with a tight cluster of points at each corner of the star
corresponding to words that place almost all of their probability mass on
that topic. Semantically, the words in these extreme clusters often (though
not always) have a fairly specialized meaning particular to the nearest topic.
Moving toward the center of the plot, words take on increasingly general
meanings.

This embedding shows other structures not visible in previous figures:
in particular, dense curves of points connecting every pair of clusters. This
pattern reflects the characteristic probabilistic structure of topic models of
semantics: in addition to the clusters of words that associate with just one
topic, there are many words that associate with just two topics, or just three,
and so on. The dense curves in Figure 6 show that for any pair of topics in
this corpus, there exists a substantial subset of words that associate with just
those topics. For words with probability sharply concentrated on two topics,
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Figure 6: Parametric embedding for word meanings and topics based on pos-
terior distributions from an LDA model. Each dot represents the coordinates rn

of one word. Large phrases indicate the positions of topic means φk (with topics
labeled intuitively). Examples of words that belong to one or more topics are
also shown.

points along these curves minimize the sum of the KL and regularization
terms. This kind of distribution is intrinsically high-dimensional and cannot
be captured with complete fidelity in any two-dimensional embedding.

As shown by the examples labeled in Figure 6, points along the curves
connecting two apparently unrelated topics often have multiple meanings
or senses that join them to each topic: deposit has both a geological and
a financial sense, phase has both an everyday and a chemical sense, and
so on.

8 Conclusions and Future Work

We have proposed a probabilistic embedding method, PE, that embeds
objects and classes simultaneously. PE takes as input a probability dis-
tribution for objects over classes, or more generally of one set of points
over another set, and attempts to fit that distribution with a simple class-
conditional parametric mixture in the embedding space. Computationally,
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PE is inexpensive relative to methods based on similarities or distances
between all pairs of objects and converges quickly on many thousands of
data points.

The visualization results of PE shed light on features of both the data set
and the classification model used to generate the input conditional proba-
bilities, as shown in applications to classified Web pages, partially classified
digits, and the latent topics discovered by an unsupervised method, LDA.
PE may also prove useful for similarity-preserving dimension reduction,
where the high-dimensional model is not of primary interest, or more gen-
erally, in analysis of large conditional probability tables that arise in a range
of applied domains.

As an example of an application we have not yet explored, purchases,
Web surfing histories, and other preference data naturally form distri-
butions over items or categories of items. Conversely, items define dis-
tributions over people or categories thereof. Instances of such dyadic
data abound–restaurants and patrons, readers and books, authors and
publications, species and foods–with patterns that might be visualized.
PE provides a tractable, principled, and effective visualization method
for large volumes of such data for which pairwise methods are not
appropriate.

Appendix A: Gradients

This appendix describes gradients of objective function E with regard to rn

and φk . We rewrite the objective function, equation 2.2, as follows:

E(R,�)

= −
N∑

n=1

K∑
k=1

p(ck |xn) log p(ck |rn)

= −
N∑

n=1

K∑
k=1

p(ck |xn)

(
log p(ck) − 1

2
‖rn − φk‖2

− log
K∑

l=1

p(cl ) exp
(

−1
2
‖rn − φl‖

) )

= −
N∑

n=1

(
K∑

k=1

p(ck |xn) log p(ck) − 1
2

K∑
k=1

p(ck |xn)‖rn − φk‖2

− log
K∑

k=1

p(ck) exp
(

−1
2
‖rn − φk‖2

))
. (A.1)
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Differentiating equation A.1 with regard to rn, we obtain:

∂ E
∂ rn

=
K∑

k=1

p(ck |xn)(rn − φk) −
∑K

k=1(rn − φk)p(ck) exp(− 1
2‖rn − φk‖2)∑K

k=1 p(ck) exp(− 1
2‖rn − φk‖2)

=
K∑

k=1

(p(ck |xn) − p(ck |rn))(rn − φk)

=
K∑

k=1

(p(ck |rn) − p(ck |xn))φk . (A.2)

Differentiating equation A.1 with regard to φk , we obtain:

∂ E
∂φk

=−
N∑

n=1

p(ck |xn)(rn − φk) +
N∑

n=1

(rn − φk)p(ck) exp( 1
2‖rn − φk‖2)∑K

k=1 p(ck) exp(− 1
2‖rn − φk‖2)

=
N∑

n=1

(p(ck |xn) − p(ck |rn))(φk − rn). (A.3)

Appendix B: Hessian

This appendix describes the Hessian of the objective function E with regard
to rn. Differentiating equation A.2 with regard to rT

n , we obtain:

∂2 E
∂ rn∂ rT

n
=−

K∑
k=1

φk

(
(rn − φk)T p(ck) exp(− 1

2‖rn − φk‖2)∑K
l=1 p(cl ) exp(− 1

2‖rn − φl‖2)

+ p(ck) exp(− 1
2‖rn−φk‖2)

∑K
l=1(rn−φl )T p(cl ) exp(− 1

2‖rn−φl‖2)(∑K
l=1 p(cl ) exp(− 1

2‖rn−φl‖2)
)2

)

=−
K∑

k=1

p(ck |rn)φk rT
n +

K∑
k=1

p(ck |rn)φkφ
T
k

+
K∑

k=1

p(ck |rn)φk rT
n −

(
K∑

k=1

p(ck |rn)φk

) (
K∑

k=1

p(ck |rn)φk

)T

=
K∑

k=1

p(ck |rn)φkφ
T
k −

(
K∑

k=1

p(ck |rn)φk

) (
K∑

k=1

p(ck |rn)φk

)T

. (B.1)
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Appendix C: Web Page Classifier

We explain here the naive Bayes model used for the estimation of condi-
tional probabilities in section 5. we assume that a Web page (considered as
a bag of words) xn in class ck is generated from a multinomial distribution
as follows:

p(xn|ck) ∝
V∏

j=1

θk j
xnj , (C.1)

where V is the number of word types, xnj is the number of tokens of word
type w j in a page xn, and θk j is the probability that a word token is of type
w j in a page of a class ck (θk j > 0,

∑V
j=1 θk j = 1). We approximate θk j by its

maximum a posteriori (MAP) estimate. The estimated θk j is

θ̂k j =
∑

n∈Ck
xnj + λk

Nk + λk V
, (C.2)

where, Nk is the number of pages in a class ck , Ck is a set of pages in a
class ck , and λk is a hyperparameter. We estimated λk by a leave-one-out
cross-validation method.

Appendix D: Handwritten Digits Classifier

The handwritten digits classifier discussed in section 6 represents each class
as a mixture of gaussians. The mean of each component is a random sample
from the class, and the covariance for each is the covariance for the entire
data set,

p(xn|ck) ∝
∑

m∈Ck

exp
{
−1

2
(xn − xm)T�−1(xn − xm)

}
, (D.1)

where xn is a 256-dimensional vector of pixel gray levels for a handwritten
digit, and Ck is the set of samples defining the model for class ck .

Appendix E: Latent Topic Model

The conditional probabilities of topics in section 7 are from a latent Dirichlet
allocation (LDA) model of a text corpus. In LDA, each document is assumed
to be generated by a mixture of latent topics. The topic proportion vector
for each document is drawn from a Dirichlet distribution. Each word is
generated by first drawing a topic from this distribution and then drawing
a word from a topic-specific multinomial distribution. Let x be a document,
wm be the mth word in the document, M be the number of words in the
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document, zk be a latent topic, and K be the number of latent topics. The
generative model of a document is as follows,

p(x) =
∫

θ

∫
ψ

(
M∏

m=1

K∑
k=1

p(wm|zk,ψ)p(zk |θ )

)
p(ψ |β)p(θ |α)dψdθ , (E.1)

where p(wm|zk,ψ), p(zk |θ ) are multinomial distributions and p(ψ |β), p(θ |α)
are Dirichlet distributions. We estimated ψkm (the probability of word wm

given latent topic zk) by Gibbs sampling (Gilks, Richardson, & Spiegelhalter,
1996; Griffiths & Steyvers, 2004), and obtained conditional probabilities
(probabilities of latent topics given word) by Bayesian inversion.
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