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Abstract

A cross-entropy approach to mapping high-dimensional data into a low-dimensional space embedding is presented. The method allows to

project simultaneously the input data and the codebook vectors, obtained with the Neural Gas (NG) quantizer algorithm, into a low-

dimensional output space. The aim of this approach is to preserve the relationship defined by the NG neighborhood function for each pair of

input and codebook vectors. A cost function based on the cross-entropy between input and output probabilities is minimized by using a

Newton–Raphson method. The new approach is compared with Sammon’s non-linear mapping (NLM) and the hierarchical approach of

combining a vector quantizer such as the self-organizing feature map (SOM) or NG with the NLM recall algorithm. In comparison with these

techniques, our method delivers a clear visualization of both data points and codebooks, and it achieves a better mapping quality in terms of

the topology preservation measure qm.

q 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Multidimensional data projection and visualization have

been subject to extensive research1. Many methods have

been developed to embed objects, described by high-

dimensional vectors, into a two- or three-dimensional output

space. The resulting mappings provide insight in the

structure of clusters and the distribution of data, and have

found a variety of applications in data mining, multivariate

data analysis, cluster analysis and pattern recognition.

Classical projection methods include multidimensional

scaling (MDS) (Togerson, 1958), and the related Sammon’s

non-linear mapping (NLM) (Sammon, 1969). The NLM

tries to minimize the mean square difference between the

pairwise distances of points in the original space and in the

projection space, i.e. it builds a distance preserving

mapping. However the computational complexity of NLM

grows quadratically with M, the number of input vectors.
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ing.uchile.cl (C.J. Figueroa), saito@cslab.kecl.ntt.co.jp (K. Saito).
1 An abbreviated version of some portions of this article appeared in
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Therefore this technique becomes impractical for large

data sets.

Neural networks present another approach to data

projection and visualization. Self-organizing neural net-

works are used for the quantization of a data manifold using

a finite set of codebook vectors. The self-organizing feature

map (SOM) associates every codebook vector of high

dimensionality with nodes in a fixed output grid of low

dimensionality (Kohonen, 1995). The SOM defines a

neighborhood function in the fixed output grid, based on

the Euclidean distance. Another self-organizing neural

network is the Neural Gas (NG) (Martinetz & Schulten,

1991), which produces a more efficient vector quantization

than SOM, because it does not have a fixed output structure

that constraints the movement of the codebook vectors. In

NG the neighborhood function is defined in the input space,

based on the rank order of the codebook vectors with respect

to the winner codebook (best matching unit, BMU)

(Martinetz, Berkovich & Schulten, 1993).

König (2000) proposed an off-line visualization scheme

that combines in cascade the SOM as a vector quantizer and

the NLM as a projection method. In the first step, N

codebook vectors are computed by SOM or any other

clustering technique, and then projected onto the output

space by NLM. As a result of this mapping, each codebook

vector has associated a codebook position in the output

space. If N is small, the mapping of the codebook vectors is
Neural Networks 18 (2005) 727–737
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet
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very fast. Secondly, the NLM recall (NLMR) algorithm is

applied to map the entire data set. In NLMR the codebook

positions determined in the previous step are fixed, and the

data points presented in the recall operation are projected by

computing only the distances with respect to these N fixed

codebook positions. The interpoint distances of the recall

data are not considered in the mapping. By using this

hierarchical approach, the computational complexity of the

mapping step is reduced to O(M), for N/M. However,

there is a trade-off between mapping quality and compu-

tation time. In fact, the more codebook vectors, the lower is

the quantization error and the better is the mapping quality.

TOPSOM (Figueroa & Estévez, 2004) is an extension of

the original SOM that replaces the traditional fixed grid by a

dynamic and continuous output space. This visualization

scheme allows to place simultaneously the codebook

vectors in the input space and their respective codebook

positions, in the low-dimensional output space. By changing

the vector quantization method to NG, the TOPNG

visualization method is obtained. The results of TOPSOM

and TOPNG are comparable to those of the SOM/NLM in

terms of the Sammon stress function, and a topology

preservation measure.

Other mapping methods include Isomap (Tenenbaum,

de Silva & Langford, 2000) and Local Linear Embedding

(LLE) (Roweis & Saul, 2000). The former is a global

approach while the latter is a local approach. Local

approaches try to map nearby points in the high-dimensional

space to nearby points in the low-dimensional embedding

space. Global approaches attempt to preserve the global

geometric structure of the data. A probabilistic approach to

embedding objects into a low-dimensional space with

neighborhood preservation is the Stochastic Neighbor

Embedding (SNE) (Hinton & Roweis, 2003). The method

minimizes the Kullback-Leibler divergence of Gaussian

neighborhoods defined in the input and output spaces. SNE

focuses mainly on visualizing a set of data points without

considering a model structure, such as the relationship

between codebook vectors and input data. The Parametric

Embedding (PE) method (Iwata, Saito, Ueda, Stromsten,

Griffiths & Tenenbaum, 2005) is a kind of generalization of

SNE, which simultaneously embeds high-dimensional

objects and their classes into a low-dimensional space. It

tries to preserve the original classification structure based on

posterior probabilities in the embedding space.

In this paper, a cross-entropy based data visualization

method is presented. The aim of this method is to preserve

the relationship between codebook vectors and input data,

as defined by the neighborhood ranking function of the

Neural Gas model. Our algorithm for data visualization

builds on previous work in document (Iwata et al., 2005)

and network (Yamada, Saito & Ueda, 2003) embedding, but

it combines these two methods in novel ways to enable new

capabilities. In addition, we have added two types of

new features, a technique for scaling initial positions and

a proposal of the upper bound function. The former enables
the use of the results obtained by other method, while the

latter allows stable minimization by the Newton–Raphson

method. Furthermore, the quality of the mappings is

evaluated using the topology preservation measure qm

(König, 2000), on a benchmark data set and three high-

dimensional real-world data sets.

Preliminary results of this research were presented in

(Estévez, Figueroa & Saito, 2005). The proposed method

outperformed classical MDS in terms of the cross-entropy

and the topology preservation measure qm, for several

data sets.
2. Visualization algorithm

This section provides an outline of our cross-entropy

approach to simultaneously visualizing both input and

codebook vectors in a K-dimensional Euclidean space. A

visualization algorithm based on the Newton–Raphson

method is described.

2.1. Problem setting

Let {xi:1%i%M} and {wj:1%j%N} be input and

codebook vectors, respectively. In the Neural Gas model,

the neighborhood function of the input vector xi with respect

to the codebook vector wj is defined as follows:

hlðxi;wjÞ Z expðKkðxi;wjÞ=lÞ: (1)

The parameter l controls the neighborhood function width,

and k(xi, wj)2{0,1,.,NK1} ranks the codebook vector wj

by the distance from the input vector xi. Here kZ0 is

associated with the nearest codebook vector.

For a given set of the trained codebook vectors in the

Neural Gas model, our problem is to compute a K

dimensional visualization of both the M input vectors and

the N codebook vectors so as to preserve the relationships

defined by the neighborhood function for each pair of input

and codebook vectors. With this aim, in what follows we

propose a cross-entropy approach.

2.2. Cross-entropy approach

Consider each value of a neighborhood function as a

probability that an input vector xi belongs to a codebook

vector wj as follows:

pi;j Z hlðxi;wjÞ; (2)

where 0%pi,j%1. An independent binomial distribution is

assumed for each pair of input and codebook vectors.

Let {yi:1%i%M} and {zj:1%j%N} be the positions of

the corresponding M input vectors and N codebook

vectors in a K-dimensional Euclidean space. The yi and zj

vectors are called output vectors and codebook positions,

respectively. As usual, we define the squared Euclidean
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distance between yi and zj as follows:

di;j Z jjyi Kzjjj
2 Z

XK

kZ1

ðyi;k Kzj;kÞ
2: (3)

Here we introduce a monotonic decreasing function r(u)

2[0,1] with respect to uR0, where r(0)Z1 and r(N)Z0.

Clearly the neighborhood function in the Neural Gas model

is a monotonic decreasing function of this type. Since r(di,j)

can also be regarded as a binomial probability between yi

and zj, we introduce a cross-entropy2 (cost) function

between pi,j and r(di,j) as follows:

Ei;j ZKpi;jln rðdi;jÞK ð1 Kpi;jÞlnð1 Krðdi;jÞÞ: (4)

Since Ei,j is minimized when r(di,j)Zpi,j, this

minimization with respect to yi and zj basically coincides

with our problem setting. In this paper, we employ

r(u)Zexp(Ku/2) as the monotonic decreasing function,

but note that our approach is not restricted to this one. Then

the total cost function (objective function) can be defined as

follows:

E Z
1

2

XM

iZ1

XN

jZ1

pi;jdi;j K
XM

iZ1

XN

jZ1

ð1 Kpi;jÞlnð1 Krðdi;jÞÞ:

(5)

Namely our approach is formalized as a function

minimization problem defined in (5) with respect to

{yi:1%i%M} and {zj:1%j%N}.
2.3. Penalty function

In our preliminary experiments, the cost function defined

in (5) sometimes produced relatively poor results when the

number of codebooks becomes large. The problem was that

some groups of codebooks were placed too closely, and thus

it was not easy to see the relationships between input and

codebook vectors.

In order to separate each codebook position slightly, we

introduce the following penalty function.

U Z
XN

jZ1

X
ssj

Uj;s; Uj;s ZKlnð1Krðcj;sÞÞ; cj;s Z jjzj Kzsjj
2:

(6)

Clearly when kzjKzsk is near zero, U becomes a very

large penalty. Therefore, we can define the final objective

function as follows:

J Z a
XM

iZ1

XN

jZ1

Ei;j Cb
XN

jZ1

X
ssj

Uj;s: (7)
2 A formal definition of the cross-entropy between two distributions is

given in Bishop (1995), p. 244.
Here the normalizing constants, a and b, are introduced

as a trade-off between both cost functions, E and U.

In this paper, these values are set to aZ1/(MN) and

bZ1/(N(NK1)).
2.4. Learning algorithm

As the basic structure of our learning algorithm, we adopt

a coordinate strategy just like the EM (Expectation-

Maximization) algorithm. Firstly, we move the output

vectors, so as to minimize the objective function by freezing

the codebook positions, then we move the codebook

positions by freezing the output vectors. These two steps

are repeated until convergence.

In the first minimization step, we need to calculate the

derivative of the objective function with respect to yi as

follows:

Jyi
Z

vJ

vyi

Z a
vE

vyi

Z a
XN

jZ1

pi;j Krðdi;jÞ

1 Krðdi;jÞ
ðyi KzjÞ: (8)

Since yi0 ði
0 siÞ disappears in (8), we can update yi

without considering the other output vectors. In the second

minimization step, we need to calculate the following

derivative,

Jzj
Z

vJ

vzj

Z a
vE

vzj

K2b
X
ssj

rðcj;sÞ

1 Krðcj;sÞ
ðzj KzsÞ; (9)

vE

vzj

Z
XM

iZ1

pi;j Krðdi;jÞ

1 Krðdi;jÞ
ðzj KyiÞ: (10)

In the latter case, we update zj by freezing the other

codebook positions. Then our algorithm can be summarized

as follows:

1. Initialize positions y1,.,yM and z1,.,zN.

2. Calculate gradient vectors Jy1
;.; JyM

.

3. Update output vectors y1,.,yM.

4. Calculate gradient vectors Jz1
;.JzN

.

5. Update codebook positions z1,.,zN.

6. Stop if max fjjJy1
jj;.; jjJyM

jj; jjJz1
jj;.; jjJzN

jjg!3:.

7. Return to 2.

In the following, we give more details about several steps

of the above algorithm.
2.5. Initialization procedure

In Step 1 we might want to initialize the positions using

conventional methods such as the MDS technique.

However, the scale of distance might be quite different

from those derived by our algorithm. In order to estimate an

adequate scale of the initial positions, we introduce a scaling

factor mO0. Then the objective function with respect to m
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can be defined as follows:

FðmÞ Z a ~FðmÞKb
XN

jZ1

X
ssj

lnð1 Krðmcj;sÞÞ; (11)

where

~FðmÞ Z
m

2

XN

jZ1

XN

jZ1

pi;jdi;j K
XM

iZ1

XN

jZ1

ð1 Kpi;jÞlnð1 Krðmdi;jÞÞ:

(12)

The first-order derivative is as follows:

vF

vm
Z a

v ~F

vm
K

1

2
b
XN

jZ1

X
ssj

rðmcj;sÞ

1 Krðmcj;sÞ
cj;s; (13)

where

v ~F

vm
Z

1

2

XM

jZ1

XN

jZ1

pi;j Krðmdi;jÞ

1 Krðmdi;jÞ
di;j; (14)

and the second-order derivative is as follows:

v2F

vm2
Z a

v2 ~F

vm2
C

1

4
b
XN

jZ1

X
ssj

rðmcj;sÞ

ð1 Krðmcj;sÞÞ
2

c2
j;s; (15)

where

v2 ~F

vm2
Z

1

4

XM

iZ1

XN

jZ1

ð1 Kpi;jÞrðmdi;jÞ

ð1 Krðmdi;jÞÞ
2

d2
i;j: (16)

Clearly the objective function F(m) is convex because the

second-order derivative is always non-negative as shown

above. Therefore, we can obtain the optimal scaling m* by

using some minimization algorithm like the Newton–

Raphson method described below. In summary, let {yi:

1%i%M} and {zj:1%j%N} be the positions obtained by

some method like MDS, then the scaled initial positions areffiffiffiffiffiffi
m*

p
yi : 1% i%M

� �
and

ffiffiffiffiffiffi
m*

p
zj : 1% j%N

� �
.

2.6. Update procedure

In Steps 3 and 5 we employ the Newton–Raphson

method for updating the current positions as mentioned

earlier. In this subsection, we focus on calculating the

modification vector Dyi by freezing the codebook positions.

In this case we can optimize J by minimizing E with respect

to yi. According to the Newton–Raphson method, we can

obtain the modification vector, if the Hessian matrix of (5)

with respect to yi is positive definite,

Dyi ZK
v2E

vyivyT
i

� �K1
vE

vyi

; (17)

where yT stands for the transposed vector of y. The Hessian

matrix can be expressed as
v2E

vyivyT
i

Z
XN

jZ1

gi;jI C
XN

jZ1

hi;jðyi KzjÞðyi KzjÞ
T ; (18)

where I stands for the identity matrix in the K-dimensional

space, and gi,j and hi,j are defined as follows:

gi;j Z
pi;j Krðdi;jÞ

1 Krðdi;jÞ
; hi;j Z

ð1 Kpi;jÞrðdi;jÞ

ð1 Krðdi;jÞÞ
2
: (19)

Clearly
PN

jZ1 gi;j can be a negative value, and the Hessian

matrix could become non-positive definite. To cope with

this situation, we consider a relaxation problem. Firstly, we

define the updated distance as follows:

di;jðDyiÞ Z jjyi CDyi Kzjjj
2; (20)

and the updated cost function as follows:

Ei;jðDyiÞ Z
1

2
pi;jdi;jðDyiÞK ð1 Kpi;jÞlnð1 Krðdi;jðDyiÞÞÞ:

(21)

Replacing the second term in the right-hand-side of (21) by

Kð1 Kpi;jÞlnð1 Krðdi;jðDyiÞK jjDyijj
2ÞÞ; (22)

we can consider the upper bound cost function Ui,j(Dyi). It is

easy to see that Ui,j(Dyi)REi,j(Dyi) because Kln(1Kr(u))

monotonically increases as uO0 decreases. By noting that

Ei,jZEi,j(0)ZUi,j(0), if we can find some Dyi that satisfiesPN
jZ1 Ui;jð0ÞO

PN
jZ1 Ui;jðDyiÞ, we can observe the following

relationships:

XN

jZ1

Ei;jO
XN

jZ1

Ui;jðDyiÞO
XN

jZ1

Ei;jðDyiÞ: (23)

Minimizing the objective function constructed by the

upper bound cost function guarantees a reduction of the

original objective function. On the other hand, the gradient

vector of the objective function derived from Ui,j is as

follows:

vUð0Þ

vDyi

Z
XN

jZ1

gi;jðyi KzjÞ Z
vE

vyi

; (24)

and the corresponding Hessian matrix is non-negative

definite as shown below,

v2Uð0Þ

vDyivDyT
i

Z
XN

jZ1

pi;jI C
XN

jZ1

hi;jðyi KzjÞðyi KzjÞ
T : (25)

As a consequence, if the Hessian matrix (18) is non-

positive definite, we can use (25) and apply the Newton–

Raphson method for updating the current positions.
2.7. Topology preservation measure

The topology preservation measure qm used in (König,

2000) is considered as a performance measure. It is based on

an assessment of rank order in the input and output spaces.
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The n nearest codebook vectors NNjiwði2½1; n
Þ of each

codebook vector j, (j2[1, N]) and the n nearest codebook

positions NNjiz of each codebook position j are computed. A

credit scheme is constructed for each pair of points, qmji
:
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Fig. 1. Iris data set (150!4) projection results. Codebook positions (o) and

output vectors (classes 1, 2, 3) are shown for (a) SOM-NLMR, (b) NG-

NLMR, and (c) NG-CE.
qmji
Z

3; if NNjiw Z NNjlz

2; if NNjiw Z NNjlz ; l2½1; n
; isl

1; if NNjiw Z NNjtz ; t 2½n; k
; n!k

0; else:

8>>>><
>>>>:

(26)

The global qm measure is defined as:

qm Z
1

3n!N

XN

jZ1

Xn

iZ1

qmji:
(27)

Typical parameter settings are nZ4 and kZ10. The range of

the qm measure is between 0 and 1, where qmZ0 indicates a

poor neighborhood preservation, and qmZ1 indicates a

perfect neighborhood preservation. The input and output

vectors can be also used for calculating the topology

preservation measure qm. The latter measure will be denoted

as q
xy
m to distinguish it from the qwz

m calculated with the

codebook vectors and positions.
3. Simulation results

For each data set, the results obtained for the proposed

model, called NG-CE (Neural Gas Cross-Entropy) and the

SOM-NLMR and NG-NLMR hierarchical strategies, are

presented. The direct application of Sammon’s NLM

algorithm for projecting the entire data sets is considered

as a reference.

3.1. Iris data

The Iris data set is a widely used benchmark in pattern

recognition. It contains three classes of 50 samples each,

where each class refers to a type of Iris plant (Iris setosa, Iris

versicolor and Iris virginica). Fig. 1 shows the projection

results obtained with the Iris data set and 70 codebook

vectors for (a) SOM-NLMR, (b) NG-NLMR, and (c) NG-

CE with lZ1.5. The best values of qm are obtained for l

ranging from 1.0 to 3.0 (Estévez, Fiqueroa & Saito, 2005).

In Table 1 the topology preserving measures for codebooks

and data points are given for the three methods considered.

In addition, the q
xy
m value obtained with the projection of the

entire data set (150 examples) by NLM is provided as a

reference. It can be observed that the NG-CE method

obtained the best q
xy
m value. Table 2 shows the topology

preservation measure qm as a function of the number of

codebook vectors. It can be observed that the q
xy
m value for
Table 1

Topology preservation measure (qm) for the Iris dataset

Algorithm qwz
m q

xy
m

SOM-NLMR 0.7712 0.6022

NG-NLMR 0.6988 0.6049

NG-CE 0.7417 0.6428

NLM (150) – 0.6213



Table 2

Mapping quality versus codebook size for the Iris dataset

Codebook vectors qwz
m q

xy
m

10 0.8083 0.4028

30 0.7917 0.5867

50 0.7350 0.6378

70 0.7417 0.6428

90 0.7324 0.6739

110 0.7287 0.6861

130 0.7250 0.6894

150 0.7300 0.7000
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Fig. 2. Iris data set projection results for NG-CE with lZ1.5, and a varying number
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input-output vectors increases when the number of code-

book vectors grows, while the qwz
m value for codebook

vectors and codebook positions diminishes. This shows

clearly that there is a trade-off between the number of

codebooks and the mapping quality. Fig. 2 shows the

NG-CE visualization results, with lZ1.5, for a varying

number of codebook vectors, ranging from 10 to 150.
3.2. Fraud data

The Fraud data set contains information about telephone

subscribers. It consists of 10721 samples of 26 features each

(Estévez, Held & Perez, 2005). The samples are divided into
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Fig. 3. Fraud data set (10721!26) projection results. Codebook positions

(o) and output vectors (classes 1, 2, 3, 4) are shown for (a) SOM-NLMR, (b)

NG-NLMR, and (c) NG-CE.
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4 classes: 705 Fraud samples, 5095 Insolvent samples, 4824

Normal samples, and 97 Other samples. The vector

quantization was performed using the NG algorithm with

300 codebook vectors.

Fig. 3 shows the projection results obtained with the

Fraud data set and 300 codebook vectors for (a)

SOM-NLMR, (b) NG-NLMR and (c) NG-CE with

lZ0.75. In Table 3 the quantifying measures are given

for the models considered. It can be observed that the

NG-CE method obtained the best qm values.
3.3. Sleep data

This real-world data set consists of features extracted

from infant polysomnograms used for sleep stage scoring,

e.g. rapid eye movements (REM) in the EOG. The Sleep

data set contains 6537 samples, and six features extracted

from epochs (pages) of 30 s. (Estévez et al., 2002). This

data set is divided into six classes that correspond to 919

Non-REM-I samples, 1479 Non-REM-II samples, 1658

Non-REM-III&IV samples, 890 REM samples, 1517

wakefulness samples and 74 indeterminate samples. The

vector quantization was performed using the NG algorithm

with 200 codebook vectors.

Fig. 4 shows the projection results obtained with the

Sleep data set and 200 codebook vectors for (a) SOM-

NLMR, (b) NG-NLMR, and (c) NG-CE with lZ2.0. In

Table 4 the quantifying measures are given for the models

considered. Again, NG-CE obtained the best qm values.

Table 5 shows the topology preservation measure qm as a

function of the number of codebook vectors. It can be

observed that the q
xy
m value for input-output vectors

increases when the number of codebook vectors grows,

while the qwz
m value for codebook vectors and codebook

positions diminishes. Again this shows clearly the trade-off

between the number of codebooks and the mapping quality.

Fig. 5 shows the NG-CE visualization results, with lZ2.0,

for a varying number of codebook vectors.
3.4. Wood data

This real-world data set contains 64-dimensional

samples extracted from 16800 color images of wood boards

(Estévez, Perez & Goles, 2003). This data set is divided into

eleven classes that correspond to 2800 clearwood samples,

1400 birds eye samples, 1400 pocket samples, 1400 wane

samples, 1400 split samples, 1400 blue stain samples, 1400
Table 3

Topology preservation measure (qm) for the Fraud dataset

Algorithm qwz
m q

xy
m

SOM-NLMR 0.4461 0.1948

NG-NLMR 0.3614 0.1823

NG-CE 0.4919 0.2727

NLM (10721) – 0.2157



Fig. 4. Sleep data set (6537!6) projection results. Codebook positions (o)

and output vectors (classes 1, 2,.,6) are shown for (a) SOM-NLMR, (b)

NG-NLMR, and (c) NG-CE.

Table 4

Topology preservation measure (qm) for the sleep dataset

Algorithm qwz
m q

xy
m

SOM-NLMR 0.5745 0.3848

NG-NLMR 0.3954 0.3469

NG-CE 0.6558 0.4121

NLM (6537) – 0.4123
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stain samples, 1400 pith samples, 1400 dead knots, 1400

live knots and 1400 holes. For the vector quantization using

the NG algorithm, 400 nodes were used. Fig. 6 shows the

projection results obtained with the Wood data set for (a)

SOM-NLMR, (b) NG-NLMR, and (c) NG-CE with lZ1.5.

In Table 6 the quantifying measures are given for the

models considered. The best qm values were obtained with

NG-CE.
4. Discussion

The results show that the proposed NG-CE method

outperforms SOM-NLMR and NG-NLMR for all the data

sets considered, in terms of the qm measure. The NG-CE

results are better than full NLM for the Fraud and Wood

data sets, and similar to NLM for the Iris and Sleep data sets.

This implies that our method, which is not based on NLM as

the other methods considered here, is able to preserve more

faithfully the local neighborhoods.

In the NG-CE algorithm, the computational complexity

of one-iteration is O(M!N!K)CO(N2!K) as shown in

the objective function described in (21). In general, the

number of input vectors M is much larger than the number

of codebook vectors N, and the dimension of output space is

usually set to KZ2 or 3. Thus, the main computational

complexity is approximately O(M). In contrast, other

visualization methods such as Sammon mapping (Sammon,

1969) or SNE (Hinton & Roweis, 2003) have a compu-

tational complexity of O(M2). This is the reason why

methods such as SOM-NLMR or NG-NLMR have been

developed, in order to reduce the computational load.

However, these methods are based on NLM, and get inferior

results than full NLM in terms of topology preservation.

The main advantage of NG-CE is its desirable O(M)
Table 5

Mapping quality versus codebook size for the sleep dataset

Codebook vectors qwz
m q

xy
m

10 0.7500 0.0880

50 0.7233 0.3449

100 0.6692 0.3660

150 0.6756 0.3891

200 0.6558 0.4121

250 0.6346 0.4143

300 0.6083 0.4242

1000 0.5040 0.4774



Fig. 5. Sleep data set projection results for NG-CE with lZ2.0, and a varying number of codebook vectors: (a) 10, (b) 50, (c) 100, (d) 150, (e) 250, (f) 300 and

(g) 1000.

P.A. Estévez et al. / Neural Networks 18 (2005) 727–737 735
computational complexity, and that provides better or

similar results than full NLM in terms of topology

preservation.

Our method is based on a probabilistic approach like

SNE, but most previous work using this approach focused

on visualizing a set of data points without a model structure.

In contrast, NG-CE tries to preserve the relationship

between codebook vectors and input vectors, as defined

by the NG neighborhood ranking function. In future
research it would be of interest to compare our approach

with other local neighborhood preserving projection

methods such as LLE (Roweis & Saul, 2000).
5. Conclusions

We have proposed a cross-entropy based method

for embedding codebook vectors and input vectors



Fig. 6. Wood data set (16800!64) projection results. Codebook positions

(o) and output vectors (classes 1, 2,.,11) are shown for (a) SOM-NLMR,

(b) NG-NLMR, and (c) NG-CE.

Table 6

Topology preservation measure (qm) for the wood dataset

Algorithm qwz
m q

xy
m

SOM-NLMR 0.3107 0.0388

NG-NLMR 0.2054 0.0378

NG-CE 0.3804 0.1625

NLM (16800) – 0.0399
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simultaneously into a low-dimensional space. The results

show that the proposed NG-CE method preserves more

faithfully the local topology than SOM-NLMR and

NG-NLMR, which are all methods of similar computational

complexity, O(M). In addition, NG-CE obtains better or

similar results than full NLM in terms of the topology

preservation measure qm, but NLM has a O(M2) compu-

tational complexity. This makes NG-CE especially useful

for large data sets. The Neural Gas neighborhood ranking

function has been used as a case study, but any

neighborhood function may be used. Effective visualiza-

tions were obtained for real world data sets of over 15000

samples. The proposed NG-CE method obtained better

visualizations than SOM-NLMR and NG-NLMR, deliver-

ing a clear visualization of both data points and codebooks.

This can be seen in the NG-CE projections of the Iris, Fraud,

Sleep and Wood data sets.
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