
Extracting regression rules from neural networks

Kazumi Saitoa,*, Ryohei Nakanob

aNTT Communication Science Laboratories, NTT Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
bNagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

Received 22 August 2001; accepted 10 June 2002

Abstract

This paper proposes a new framework and method for extracting regression rules from neural networks trained with multivariate data

containing both nominal and numeric variables. Each regression rule is expressed as a pair of a logical formula on the conditional part over

nominal variables and a polynomial equation on the action part over numeric variables. The proposed extraction method first generates one such

regression rule for each training sample, then utilizes the k-means algorithm to generate a much smaller set of rules having more general

conditions, where the number of distinct polynomial equations is determined through cross-validation. Finally, this method invokes decision-

tree induction to form logical formulae of nominal conditions as conditional parts of final regression rules. Experiments using four data sets

show that our method works well in extracting quite accurate and interesting regression rules. q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Polynomial equations; Nominal variables; Regression rules; Rule extraction; Vector quantization; Cross-validation; Decision trees

1. Introduction

Modeling complex phenomena such as price tendency of

goods is a challenging but important research issue. Such

modeling tasks will be greatly promoted if we can efficiently

and adequately find some hidden but intrinsic relationships

from previously observed data. To this end, we have

proposed a method called RF51 (Saito & Nakano, 1997a,b),

which employs neural networks of a polynomial type for

producing explicitly understandable learning results from

multivariate numeric data.

However, the data observed in many real fields

usually contains both nominal and numeric values. By

adequately encoding nominal values into numeric ones,

we can straightforwardly apply RF5 to such data, but the

resulting polynomial equations will not be explicitly

understandable, i.e. the numeric equations over such

encoded nominal values cannot be directly interpretable

for our intuition. To overcome this problem, this paper

proposes a new framework and method for extracting

regression rules from trained neural networks, where the

conditional part of each regression rule is expressed as a

logical formula over nominal variables, and the action

part is expressed as a polynomial equation over numeric

variables.

Although there exists a large amount of work on rule

extraction from trained neural networks (Andrews,

Diederich, & Tickle, 1995; Ishikawa, 2000; Mitra &

Hayashi, 2000), the work has emphasized classification

tasks rather than regression models that predicts some

continuous variable. In fact, it was stated in a survey

paper by Tickle, Andrews, Golea, and Diederich (1998)

that one future direction for knowledge-extraction

techniques is enabling to deal with neural networks of

real-valued outputs. We believe that our proposing

framework and method will take an important step

along this research direction.

This paper is organized as follows. Section 2 formalizes

our extraction problem and explains the basic framework

associated with extracting regression rules from neural

networks trained with data containing both nominal and

numeric values. Section 3 gives details of the rule extraction

method called RN2, which adopts the k-means algorithm for

finding representative values, the cross-validation error as a

criterion for model selection, and the c4.5 program for

generating nominal conditions. Section 4 reports experi-

mental results using one artificial and three real data sets.

Section 5 discusses related work and directions for future

research.

0893-6080/02/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved.

PII: S0 89 3 -6 08 0 (0 2) 00 0 89 -8

Neural Networks 15 (2002) 1279–1288

www.elsevier.com/locate/neunet

* Corresponding author. Tel.: þ81-774-93-5137; fax: þ81-774-93-5155.

E-mail addresses: saito@cslab.kecl.ntt.co.jp (K. Saito), nakano@ics.

nitech.ac.jp (R. Nakano).
1 RF5 denotes Rule extraction from Facts, version 5.

http://www.elsevier.com/locate/neunet

2. Framework for rule extraction

2.1. Polynomial expressions

Let ðx1;…; xK ; yÞ or ðx; yÞ be a vector of variables

describing a sample, where xk is a numeric input variable

and y is a numeric output (or target) variable. Then the RF5

algorithm (Saito & Nakano, 1997a,b) searches for multi-

variate polynomial equations of the following form, whose

power values are not restricted to integers

y ¼ w0 þ
XJ

j¼1

wj

YK
k¼1

x
wjk

k ¼ w0 þ
XJ

j¼1

wj exp
XK
k¼1

wjk ln xk

 !
;

ð1Þ

where J denotes the number of terms appearing in

polynomial equations.

Clearly, Eq. (1) can be regarded as a feedforward

computation of three-layer neural networks where the

activation function of each hidden unit is expðsÞ ¼ es:

These hidden units are computationally powerful and

referred to as product units (Durbin & Rumelhart, 1989).

Moreover, such functional relations can represent many of

the numeric laws found by previous scientific discovery

systems like BACON (Langley, Simon, Bradshaw, &

Żytkow, 1987). By using Eq. (1) that directly express

multivariate polynomial equations, available domain

knowledge will be straightforwardly embedded within the

neural networks, and we can easily interpret the learned

results. Therefore, by repeating such interactions with

domain experts, we can expect to build practical models

using past observed data.

2.2. Regression rules

Let ðq1;…; qL; x1;…; xK ; yÞ or ðq; x; yÞ be a vector of

variables describing a sample, where ql is a nominal input

variable. Here, by adding extra categories, if necessary,

Nomenclature

xk numeric input variable

K number of numeric input variables

y numeric output (target) variable

wj weight between hidden unit j and output unit

wjk weight between input unit for xk and hidden unit j

J number of hidden units

ql nominal input variable

L number of nominal input variables

qlm dummy variable for ql

Ml number of categories (dummy variables) for ql

Qi
l non-empty subset of categories associated with ql appearing in rule i

I p number of regression rules

y(q,x;Q) neural networks considered in this paper

Q vector consisting of all weights

P number of weights

vjkl weight between input unit qkl and hidden unit j

D training data

N number of training samples

T test data

G(Q) generalization error

L(Q) objective function for least-squares estimate

E(Q) penalized objective function

lp penalty factor for weight up

c
m
j activation value for hidden unit j from nominal value of sample m

rj representative value for hidden unit j

Gi set of partitioned vectors

VQ objective function for quantization

Ni number of vectors belonging to Gi

I number of representatives

S number of data segments for cross-validation

I(q) indexing function

CV objective function for cross-validation

I0 number of terminal nodes in decision tree

K. Saito, R. Nakano / Neural Networks 15 (2002) 1279–12881280

without losing generality, we can assume that ql exactly

matches the only one category. Therefore, for each ql we

introduce a dummy variable expressed by qlm as follows:

qlm ¼
1 if ql matches the mth category;

0 otherwise:

(
:

Here m ¼ 1;…;Ml; and Ml is the number of distinct

categories appearing in ql: Hereafter, q denotes a vector

constructed by arranging all dummy variables.

As a class of target relationships, we consider a set of

regression rules, where the conditional part of each rule is

expressed as a logical formula over nominal variables, and

the action part is expressed as a polynomial over numeric

variables. Let Qi
l be a non-empty subset of all the categories

(dummy variables) associated with ql; appearing in the

conditional part of the ith rule. In this paper, regression rule

sets of the following form are considered:

if
L̂

l¼1

_
qlm[Qi

l

qlm then y ¼ wi
0 þ

XJi

j¼1

wi
j

YK
k¼1

x
wi

jk

k ; i ¼ 1;…; Ip;

ð2Þ

where Ip is the number of rules. Note that when Qi
l contains

all the categories associated with ql; the corresponding

disjunctive condition
WMl

m¼1 qlm becomes always true, and

we usually omit it from the condition.

We consider that Eq. (2) is general enough and widely

applicable to many problems. For example, Coulomb’s law

F ¼ 4pee1e2=r
2 relating the force of attraction F of two

particles with charges e1 and e2; respectively, separated

by a distance r depends on e, the permittivity of surround-

ing medium; i.e. if substance is ‘water’ then F ¼

8897:352e1e2=r
2; if substance is ‘air’ then F ¼

111:280e1e2=r
2; and so on.

2.3. Equivalence of representations

As a natural extension of Eq. (1), we can consider neural

networks of the following form, including both nominal and

numeric input variables

yðq; x;QÞ ¼ w0 þ
XJ

j¼1

wjg vj0 þ
XL
l¼1

XMl

m¼1

vjlmqlm

 !

� exp
XK
k¼1

wjk ln xk

 !
; ð3Þ

where Q denotes a P-dimensional parameter vector

constructed by arranging all weights wj; vjlm and wjk: As

the activation function g, this paper adopts an exponential

one ðgð·Þ ¼ expð·ÞÞ in conformity with g for numeric

variables. Since we can eliminate the bias weights vj0 by

regarding wj expðvj0Þ as new weights, neural networks of the

following form are obtained:

yðq; x;QÞ ¼ w0 þ
XJ

j¼1

wj exp
XL
l¼1

XMl

m¼1

vjlmqlm

 !

� exp
XK
k¼1

wjk ln xk

 !
: ð4Þ

As shown below, Eqs. (2) and (4) are almost equivalent if

the nominal conditions in Eq. (2) are mutually disjoint.

Firstly, by replacing true and false of the truth values with 1

and 0, respectively, prediction values based on Eq. (2) are

equivalently calculated as follows:

y ¼
XIp
i¼1

YL

l¼1

X
qlm[Qi

l

qlm

0
@

1
A wi

0 þ
XJi

j¼1

wi
j

YK
k¼1

x
wi

jk

k

0
@

1
A: ð5Þ

Thus, by using the following approximation with a large

positive b;

YL

l¼1

X
qlm[Qi

l

qlm

0
@

1
A <

YL

l¼1

exp
XMl

m¼1

vi
lmqlm

 !
;

where vi
lm ¼

0 if qlm [Qi
l;

2b otherwise;

(
:

ð6Þ

Eq. (5) can be almost equivalently transformed into

y ¼
XIp
i¼1

wi
0 exp

XL
l¼1

XMl

m¼1

vi
lmqlm

 !

þ
XIp
i¼1

XJi

j¼1

wi
j exp

XL
l¼1

XMl

m¼1

vi
lmqlm

 !
exp

XK
k¼1

wi
jk ln xk

 !
: ð7Þ

Clearly, Eq. (7) can be regarded as a special case of Eq. (4).

Note that the above approximation can be arbitrarily

accurate by using a large enough b:

Conversely, by selecting some category number mðlÞ for

each nominal variable ql and putting Ql ¼ {qlmðlÞ}; we can

extract the following regression rule from Eq. (4)

if
L̂

l¼1

_
qlm[Ql

qlm then y ¼ w0 þ
XJ

j¼1

wj

YL

l¼1

expðvjlmðlÞÞ
YK
k¼1

x
wjk

k ;

ð8Þ

where wj

QL
l¼1 expðvjlmðlÞÞ is regarded as a polynomial

coefficient. Thus, by extracting individual rules for each

possible combination of the category numbers, we can

obtain a set of regression rules, which is equivalent to Eq.

(4).

Therefore, it was shown that Eqs. (2) and (4) have the

same representational capability. Moreover, it was

suggested that a set of regression rules can be trained by

using a neural network, and the trained neural network can

be transformed into a set of regression rules. However, this

extraction approach inherently produces
QL

l¼1 Ml regression

K. Saito, R. Nakano / Neural Networks 15 (2002) 1279–1288 1281

rules, i.e. it will suffer from combinatorial explosion when

the number of nominal variables gets large. To obtain a

reasonable rule set, this paper proposes an extraction

method, which is described in Section 2.4.

2.4. Learning of neural networks

After employing some adequate objective function like a

sum of squared errors, we can use any learning algorithm for

training neural networks defined in Eq. (4). However, since

there exist several desirable characteristics, we adopt the

following to train neural networks.

Let D ¼ {ðqm; xm; ymÞ : m ¼ 1;…;N} be a set of training

data, where N is the number of samples. Here, we assume

that each training sample ðqm; xm; ymÞ is independent and

identically distributed. Now, our goal in learning with

neural networks is defined as a problem of minimizing the

generalization error, that is, finding the optimal estimator

Qp that minimizes

GðQÞ ¼ EDET ðy
n 2 yðqn

; xn;QðDÞÞÞ2; ð9Þ

where T ¼ ðqn; xn; ynÞ denotes test data independent of the

training data D. The least-squares estimate of Qp; denoted

by Q̂; minimizes the error sum of squares

LðQÞ ¼
1

2

XN
m¼1

ðym 2 yðqm
; xm;QÞÞ2: ð10Þ

However, this estimation is likely to overfit to noise of the

training data, especially when we employ non-linear models

such as neural networks. Thus, by using Eq. (10) as our

criterion we cannot obtain good results in terms of the

generalization performance defined in Eq. (9) (Bishop,

1995).

It is widely known that adding some penalty term to Eq.

(10) can lead to significant improvements in network

generalization (Bishop, 1995). To improve both the

generalization performance and the readability of the

learning results, we adopt a method to learn a distinct

penalty factor for each weight as a minimization problem

over the cross-validation error, called the minimum cross-

validation (MCV) regularizer (Saito & Nakano, 2000b). Let

l̂p (.0) be a learned penalty factor for a weight up; then we

can obtain the resulting neural network subject to Eq. (4) by

finding the Q that minimizes the following objective

function for weights

EðQÞ ¼ LðQÞ þ
1

2

XP
p¼1

l̂pu
2
p: ð11Þ

In order to efficiently and constantly obtain good learning

results, we employ a second-order learning algorithm called

BPQ (Saito & Nakano, 1997a). By adopting a quasi-Newton

method (Luenberger, 1984) as a basic framework, we

calculate the descent direction on the basis of a partial

BFGS (Broyden–Fletcher–Goldfarb–Shanno) update and

then efficiently calculate a reasonably accurate step-length

as the minimal point of a second-order approximation. Note

that in our own experiments (Saito & Nakano, 2000a), the

combination of the squared penalty term and the BPQ

algorithm drastically improves the convergence perform-

ance in comparison to other combinations, and at the same

time, brings about excellent generalization performance.

3. Method for rule extraction

3.1. Overview of the method

Assume that we have already obtained a trained neural

network. In order to find a set of regression rules as

described in Eq. (2), we need a suitable efficient method to

extract the nominal conditions from the trained neural

network.

We can straightforwardly extract a regression rule for

each training sample, and simply assemble them to obtain a

rule set. Namely, the jth hidden unit calculates the following

activation value from the encoded nominal values of the mth

training sample

c
m
j ¼ exp

XL
l¼1

XMl

m¼1

v̂jlmq
m
lm

 !
; ð12Þ

where v̂jlm denotes the weights of the trained neural network.

Thus, by putting Q
m
l ¼ {q

m
lm : q

m
lm ¼ 1}; we can obtain the

following set of regression rules from the training data and

the trained neural network

if
L̂

l¼1

_
qlm[Q

m

l

qlm then y ¼ ŵ0 þ
XJ

j¼1

ŵjc
m
j

YK
k¼1

x
ŵjk

k ;

m ¼ 1;…;N:

ð13Þ

However, the results of this naive method can still be far

from desirable because they contain a large number of

similar rules, and each nominal condition is too specific

representing only one training sample.

Based on the above considerations, we propose a new

extraction method called RN22; i.e. the number of distinct

polynomial equations is reduced by finding representative

values of Eq. (12), an adequate number of representatives is

determined by using a criterion for model selection and a set

of nominal conditions is determined by solving a standard

classification problem by using decision trees.

3.2. Finding representative vectors

In order to find representative vectors, a set of vectors

{cm ¼ ðc
m
1 ;…; c

m
J Þ

T : m ¼ 1;…;N} calculated from the

encoded nominal values is quantized into a set of

representative vectors {ri ¼ ðri
1;…; ri

JÞ
T : i ¼ 1;…; I};

2 RN2 denotes Rule extraction from Neural networks, version 2.

K. Saito, R. Nakano / Neural Networks 15 (2002) 1279–12881282

where I is the number of representatives. Among several

vector quantization (VQ) algorithms, we employ the k-

means algorithm (Lloyd, 1982) due to its simplicity.

In the k-means algorithm, all of the vectors are assigned

simultaneously to their nearest representative vectors, each

representative vector is moved to the group’s mean and this

process is repeated until there is no further change in the

grouping of representative vectors. Consequently, all of the

vectors are partitioned into I disjoint subsets {Gi : i ¼

1;…; I} so that the following sum-of-squares error function

VQ is minimized:

VQ ¼
XI

i¼1

X
m[Gi

XJ

j¼1

ðc
m
j 2 ri

jÞ
2
: ð14Þ

Let Ni be the number of vectors belonging to Gi; then, each

element of the representative vector is calculated as follows:

ri
j ¼

1

Ni

X
m[Gi

c
m
j : ð15Þ

3.3. Criterion for representative number selection

For a given data set and trained neural network, since we

do not know the optimal number of distinct polynomial

equations in advance, we must evaluate the plausibility of

the number of representatives by changing I. For this

purpose, we employ the procedure of cross-validation

(Stone, 1974) which was also mentioned in Section 3.2.

This procedure divides the data D at random into S distinct

segments {Ds : s ¼ 1;…; S}: S 2 1 segments are used for

the training, and the remaining one is used for the test. This

process is repeated S times by changing the remaining

segment. The extreme case of S ¼ N is known as the leave-

one-out method, which is often used for a small size of data

(Bishop, 1995).

Now, we introduce a function iðqÞ that returns the index

of the representative vector minimizing the distance, i.e.

iðqmÞ ¼ arg min
i

XJ

j¼1

ðc
m
j 2 ri

jÞ
2
: ð16Þ

By placing iðqÞ on the conditional parts, we can consider the

following set of rules using the representative vectors:

if iðqÞ ¼ i then y ¼ ŵ0 þ
XJ

j¼1

ŵjr
i
j

YK
k¼1

x
ŵjk

k ; i ¼ 1;…; I:

ð17Þ

Since each element of c is calculated as

cj ¼ exp
XL
l¼1

XMl

m¼1

v̂jlmqlm

 !
: ð18Þ

Eq. (17) can be applied to a new sample, as well as the

training samples. Thus, by using the final weights Q̂ðsÞ

calculated from the cross-validation procedure excluding

one segment Ds; the output value with respect to a test

sample n can be calculated as

ŷn ¼ ŵðsÞ
0 þ

XJ

j¼1

ŵðsÞ
j r

iðqnÞ
j

YK
k¼1

ðxnkÞ
ŵðsÞ

jk : ð19Þ

Therefore, we can define the following cross-validation

error function

CV ¼
1

N

XS

s¼1

X
n[Ds

ðyn 2 ŷnÞ2: ð20Þ

3.4. Generating conditional parts

Finally, the indexing function iðqÞ described in Eq. (17)

must be transformed into a set of nominal conditions as

described in Eq. (2). One reasonable approach is to perform

this transformation by solving a simple classification

problem whose training samples are {ðqm; iðqmÞÞ : m ¼

1;…;N}; where iðqmÞ indicates the class label of a training

sample qm: Alternatively, a set of training samples

belonging to class i is {qm : m [Gi}: For this classification

problem, we employ the c4.5 decision tree generation

program (Quinlan, 1993) due to its wide availability.

In the induced decision tree, samples are passed from the

root node to a terminal node that assigns the corresponding

class label, with decisions being made at each non-terminal

node. By concatenating such decisions at non-terminal

nodes for the path to each terminal node, we can produce a

set of conjunctive conditions. A procedure for constructing

Qi
l from the ith condition is as follows: Qi

l is initialized to

{qlm : m ¼ 1;…;Ml} for each l, then it is replaced with

{qlm} (or Qi
l 2 {qlm}) according to each appearance of

qlm ¼ 1 (or qlm ¼ 0) in the ith conjunctive condition.

Therefore, we can obtain the following set of regression

rules:

if
L̂

l¼1

_
qlm[Qi

l

qlm then y ¼ w0 þ
XJi

j¼1

wjr
zðiÞ
j

YK
k¼1

x
wjk

k ;

i ¼ 1;…; I0;

ð21Þ

where zðiÞ indicates the class label of the ith terminal node,

and I0 is the number of terminal nodes. In general, the

number I 0 of terminal nodes is greater than or equal to the

number Î of distinct polynomial equations because the same

equation may appear on more than one action parts. Note

that it is possible to perform some simplifications of Eq. (21)

such as the removal of
WMl

m¼1 qlm and possible disjunctive

integration of some nominal conditions having the same

polynomial equations. Moreover, by using a special

condition ‘else’, we can simplify one of nominal conditions

and reduce the number of regression rules in many cases.

K. Saito, R. Nakano / Neural Networks 15 (2002) 1279–1288 1283

3.5. Summary of the method

The above procedure is summarized as follows:

Step 1. Calculate I representative vectors which mini-

mize Eq. (14).

Step 2. Select the optimal Î which minimizes Eq. (20).

Step 3. Generate nominal conditions using c4.5, and

output the final rule set.

Clearly, these steps can be executed within the

computational complexity of polynomial order with respect

to the numbers of training samples, variables, hidden units,

representatives, iterations performed by the k-means

algorithm, and data segments used for cross-validation.

Here note that the polynomial equations produced by our

method differ only in their coefficients. However, since

some polynomial coefficients can be zero, a set of arbitrary

polynomial equations can be obtained if the adequate

number of hidden units is prepared.

4. Evaluation by experiments

4.1. Experimental settings

By using artificial, scientific, financial and automobile

data sets, we evaluated the RN2 method.

The common experimental settings for training neural

networks are as follows. The initial values for the weights

vjkl and wjk are independently generated according to a

normal distribution with a mean of 0 and a standard

deviation of 1; the initial values for the weights wj are set to

0, but the bias value w0 is initially set to the average output

value of all training samples. The initial values for penalty

factors lp are set to 1. The iteration is terminated when the

gradient vector is sufficiently small, i.e. each element of the

gradient vector is less than 1026.

The common experimental settings for extracting

regression rules are as follows. In the k-means algorithm,

initial representative vectors {ri} are randomly selected as a

subset of vectors {cm}: For each I, trials are repeated 100

times with different initial values, and the best result

minimizing Eq. (14) is used. The cross-validation error of

Eq. (20) is calculated by using the leave-one-out method,

i.e. S ¼ N: The candidate number I of representative vectors

is incremented in turn from 1 until the cross-validation error

increases. The c4.5 program is used with the initial settings.

4.2. Experiment using artificial data set

We consider the following set of regression rules:

where we have three nominal and nine numeric input

variables, and the numbers of categories of q1; q2 and q3 are

set as M1 ¼ 2; M2 ¼ 3 and M3 ¼ 4; respectively. Clearly,

variables q1; x6;…; x9 are irrelevant to Eq. (22). Each sample

is generated as follows: each value of nominal variables

q1; q2; q3 is randomly generated so that only one dummy

variable becomes 1 for each nominal variable, each value of

numeric variables x1;…; x9 is randomly generated in the

range of (0,1), and we get the corresponding value of y by

calculating Eq. (22) and adding Gaussian noise with a mean

of 0 and a standard deviation of 0.1 The number of samples

is set to 400 ðN ¼ 400Þ:

In this experiment, a neural network was trained by

setting the number of hidden units to 2. Table 1 compares

the performance of the experimental results obtained by

applying the k-means algorithm with the different number of

representative vectors I, where the root mean squared error

(RMSE) was used for the evaluation; the training error was

evaluated by using Eq. (17); the cross-validation error was

calculated by using Eq. (20); and the generalization error

was also evaluated by using a set of noise-free 10,000 test

samples generated independently of the training samples.

This table shows that the training error almost monotoni-

cally decreased; the cross-validation error was minimized

when I ¼ 3 (indicating that an adequate number of

representative vectors is 3); and the generalization error

was also minimized when I ¼ 3: Since the cross-validation

and generalization errors were minimized with the same

number of representative vectors, we can see that the

desirable model was selected by using the cross-validation

for this data set. Here, the generalization error of the trained

neural network was 0.315, showing the reasonable fidelity

of rules.

On the other hand, the experimental result of I ¼ 1 is

nothing but using only the numeric variables by ignoring all

the nominal variables; i.e. this corresponds to the result

obtained by applying RF5 to only numeric data. Table 1

shows that these nominal variables played an important role

because the generalization RMSEs decreased drastically

from I ¼ 1 to 3.

By applying the c4.5 program, we obtained the following

decision tree whose leaf nodes correspond to the following:

q21 ¼ 0 :

l q34 ¼ 1 : 2ð83:0Þ , ðw1r2
1 ;w2r2

2Þ ¼ ðþ5:04;þ2:13Þ

if q21 ^ ðq31 _ q33Þ then y ¼ 2 þ 3x21
1 x3

2 þ 4x3x1=2
4 x21=3

5

if ðq22 _ q23Þ ^ ðq32 _ q34Þ then y ¼ 2 þ 5x21
1 x3

2 þ 2x3x1=2
4 x21=3

5

else then y ¼ 2 þ 4x21
1 x3

2 þ 3x3x1=2
4 x21=3

5

8>><
>>: ; ð22Þ

K. Saito, R. Nakano / Neural Networks 15 (2002) 1279–12881284

l q34 ¼ 0 :

l l q32 ¼ 0 : 3ð129:0Þ , ðw1r3
1 ;w2r3

2Þ ¼ ðþ3:96;þ2:97Þ

l l q32 ¼ 1 : 2ð53:0Þ , ðw1r2
1 ;w2r2

2Þ ¼ ðþ5:04;þ2:13Þ

q21 ¼ 1 :

l q34 ¼ 1 : 3ð36:0Þ , ðw1r3
1 ;w2r3

2Þ ¼ ðþ3:96;þ2:97Þ

l q34 ¼ 0 :

l l q32 ¼ 0 : 1ð73:0Þ , ðw1r1
1 ;w2r1

2Þ ¼ ðþ3:10;þ4:07Þ

l l q32 ¼ 1 : 3ð26:0Þ , ðw1r3
1 ;w2r3

2Þ ¼ ðþ3:96;þ2:97Þ:

Here the polynomial coefficients were rounded off to the

second decimal place, and each number of training samples

arriving at the corresponding leaf node is shown in

parenthesis. Then, we obtained the following rule set by

performing some simplifications:

Therefore, although some of the weight values were

slightly different, we can see that RN2 successfully

found a set of regression rules almost equivalent to the

true one.

4.3. Experiment using scientific data set

To evaluate the rediscovery performance of RN2, we

used a historical scientific data set concerning Ohm’s

law described by Langley et al. (1987). This data set

contained nine samples, and four variables were used in

our experiments, i.e. two nominal (battery and wire) and

one numeric (conductance) input variables and one

output (current) variable.

In this experiment, since the number of samples was

small, the number of hidden units was set to 1. Table 2

shows the experimental results, which indicates that the

adequate number of representatives was 3. In addition,

since the cross-validation RMSEs drastically decreased

from I ¼ 1 to 3, the nominal variables are considered to

be indispensable in this rediscovery problem. By

applying the c4.5 program, the following rule set was

found:

where the weight values were rounded off to the third decimal

place. Clearly, the obtained rule set tells us that the nominal

variable corresponding to the wire was irrelevant, and the

battery was used in changing the coefficients of the con-

ductance. Note that one form of Ohm’s law for electrical circuits

is described as Current ¼ Voltage £ Conductance, and the

voltage is determined by a battery type. Therefore, although the

exponent was slightly different from 1 and a very small constant

term was included, we can see that RN2 successfully

rediscovered the fundamental relation of Ohm’s law.

Note that the BACON systems attempt to discover laws

from data containing nominal variables by postulating

intrinsic properties (Langley et al., 1987). In the above

scientific problem, the voltage is regarded as the intrinsic

property associated with the nominal variable Battery. The

representative vectors calculated from our method can be

used in defining the intrinsic values. Actually, in an

experiment to revise an existing ecosystem model using

Earth science data, our method was successfully applied for

finding improved values for an intrinsic property associated

with vegetation type, which plays a central role in the model

(Saito et al., 2001).

4.4. Experiment using financial data set

We performed an experimental study to find underlying

rules of market capitalization using balance sheet (BS)

Table 1

Influence of number I for artificial data set

RMSE type I ¼ 1 I ¼ 2 I ¼ 3 I ¼ 4

Training 2.090 0.828 0.142 0.142

Cross-validation 2.097 0.841 0.156 0.160

Generalization 2.814 1.437 0.320 0.322

Table 2

Influence of number I for scientific data set

RMSE type I ¼ 1 I ¼ 2 I ¼ 3 I ¼ 4

Training 0.99397 0.23223 0.03963 0.02801

Cross-validation 1.11826 0.27996 0.05964 0.05987

if Battery ¼ “A” then Current ¼ 0:006 þ 1:047ðConductanceÞ0:964

if Battery ¼ “B” then Current ¼ 0:006 þ 1:198ðConductanceÞ0:964

if Battery ¼ “C” then Current ¼ 0:006 þ 1:676ðConductanceÞ0:964

8>><
>>: ; ð24Þ

if q21 ^ ðq31 _ q33Þ then y ¼ 2:01 þ 3:10x21:00
1 xþ3:01

2 þ 4:07xþ1:02
3 xþ0:51

4 x20:33
5

if ðq22 _ q23Þ ^ ðq32 _ q34Þ then y ¼ 2:01 þ 5:04x21:00
1 xþ3:01

2 þ 2:13xþ1:02
3 xþ0:51

4 x20:33
5

else then y ¼ 2:01 þ 3:96x21:00
1 xþ3:01

2 þ 2:97xþ1:02
3 xþ0:51

4 x20:33
5 :

8>><
>>: : ð23Þ

K. Saito, R. Nakano / Neural Networks 15 (2002) 1279–1288 1285

items (Saito et al., 2000). Our experiments used data of 953

companies listed on the first section of the Tokyo Stock

Exchange (TSE), where banks, and insurance, securities and

recently listed companies were excluded. The market

capitalization of each company was calculated by multi-

plying the shares of outstanding stocks by the stock price at

the end of October 1999. As the first step in this study, we

selected six fundamental items from all of the BS items (x1 :

current assets; x2 : property and equipment; x3 : total assets;

x4 : current liabilities; x5 : long-term debt; and x6 : total

liabilities), and the values of these items were also

calculated at the end of October 1999. Additionally, since

market capitalization rules can differ according to the type

of industry, the 33 classifications of the TSE were used as a

nominal variable. Note that the actual number of categories

amounted to 30 because three categories were excluded as

described above.

In order to intuitively understand the effect of the

nominal variable, the number of hidden units was fixed at 1.

Table 3 shows the experimental results, indicating the

adequate number of representatives was 3. Since the cross-

validation RMSEs clearly decreased from I ¼ 1 to 3, the

nominal variable was effectively used. The final rule set

obtained was

if
_

qm[Qi

qm then y ¼ 12891:6 þ w1rixþ0:668
2 xþ1:043

3 x20:747
6 ;

i ¼ 1; 2; 3; ð25Þ

where each polynomial coefficient was calculated as

w1r1 ¼ þ1:907; w1r2 ¼ þ1:122; w1r3 ¼ þ0:657:

ð26Þ

Each group of the nominal conditions was as follows:

Q1 ¼ {‘Pharmaceuticals’, ‘Rubber Products’, ‘Metal

Products’, ‘Machinery’, ‘Electrical Machinery’, ‘Trans-

port Equipment’, ‘Precision Instruments’, ‘Other Pro-

ducts’, ‘Communications’, ‘Services’}.

Q2 ¼ {‘Foods’, ‘Textiles’, ‘Pulp and Paper’, ‘Chemi-

cals’, ‘Glass and Ceramics’, ‘Nonferrous Metals’,

‘Maritime Transport’, ‘Retail Trade’}.

Q3 ¼ {‘Fisheries’, ‘Mining’, ‘Construction’, ‘Oil and

Coal Products’, ‘Iron and Steel’, ‘Electricity and Gas’,

‘Land Transport’, ‘Air Transport’, ‘Wearhousing’,

‘Wholesale’, ‘Other Financing Business’, ‘Real Estate’}.

Since the second term on the right-hand side of the

polynomial equation appearing in Eq. (25) is always

positive, each of the polynomial coefficients w1ri can

indicate the stock price setting tendency of industry groups

in similar BS situations, i.e. industries appearing in Q1 are

likely to have a high setting, while those in Q3 are likely to

have a low setting. More specifically, when considering

individual rules for each industry, the ‘Pharmaceuticals’

industry had the highest setting due to the largest coefficient

(2.348), while the ‘Electricity and Gas’ industry had the

lowest setting due to the smallest coefficient (0.374). It

seems that the resulting rules extracted by RN2 are

intuitively reasonable.

4.5. Experiment using automobile data set

By using the automobile data set from the UCI repository of

machine learning databases, we attempted to extract

regression rules for predicting the prices from the car and

truck specifications in 1985. The data set had 159 samples with

no missing values ðN ¼ 159Þ; and consisted of 10 nominal and

14 numeric input variables, and one target variable (price).

Note that we ignored one nominal variable (engine location)

having the same value through all the samples.

In this experiment, since the number of samples was

small, the number of hidden units was also set to 1. Table 4

shows the experimental results, indicating that the adequate

number of representatives was 3. Even in this problem,

since the cross-validation RMSEs clearly decreased from

I ¼ 1 to 3, the nominal variables played an important role.

The polynomial part of the extracted rules was as follows:

y ¼ 1163:16 þ w1rixþ1:638
2 xþ0:046

4 x21:436
5 x20:997

6 x20:245
9 x20:071

13 ;

ð27Þ

where each polynomial coefficient was calculated as

w1r1 ¼ þ1:453; w1r2 ¼ þ1:038; w1r3 ¼ þ0:763:

ð28Þ

The relatively simple nominal conditions were obtained by

using the c4.5 rules program. Similarly as described for the

experiments using the financial data set, since the second

term on the right-hand side of Eq. (27) is always positive,

the polynomial coefficient w1ri can indicate the car price

setting tendency for similar specifications. Actually, the

regression rules told us that cars of each price setting are:

High price setting: ‘5-cylinder ones’, ‘BMW’s’, ‘con-

vertibles’, ‘VOLVO turbos’, ‘SAAB turbos’, ‘6-cylinder

turbos’.

Middle price setting: ‘PEUGOT’s’, ‘VOLVO non-

turbos’, ‘SAAB non-turbos’, ‘HONDA 1bbl-fuel-system

ones’, ‘MAZDA fair-risk-level ones’, ‘non-BMW non-

turbos and 6-cylinder ones’, ‘non-5-cylinder turbos and

fair-risk-level ones’.

Low price setting: other cars.

Table 3

Influence of number I for financial data set

RMSE type I ¼ 1 I ¼ 2 I ¼ 3 I ¼ 4

Training 562571.4 420067.5 388081.8 385114.0

Cross-validation 572776.7 440071.6 404998.2 406696.5

K. Saito, R. Nakano / Neural Networks 15 (2002) 1279–12881286

It seems that the resulting nominal conditions found by

RN2 are natural for our intuition.

5. Related work and future directions

To date a large amount of work on rule extraction from

trained neural networks has been done as surveyed by

Andrews et al. (1995), Tickle et al. (1998) and Mitra and

Hayashi (2000). However, as noted earlier, previous work

has emphasized classification tasks rather than regression

models that predicts some continuous variable. Although

some methods for fuzzy reasoning or fuzzy control address

continuous output values, substantially different problems

are posed. Since our framework has some unique charac-

teristics, it seems difficult to perform direct comparative

studies using these existing methods. Whereas our future

research should address enabling to express the m-of-n

concept (Towell & Shavlik, 1993) on the nominal condition,

and incorporating fuzziness (Mitra & Hayashi, 2000) in the

proposed framework.

A few years ago, we proposed a preliminary extraction

method (Nakano & Saito, 1999); i.e. a set of nominally

conditioned terms is extracted from each hidden unit, and

then each of these terms is in turn combined through all of

the hidden units. When a denotes the average number of

terms extracted from each hidden unit, the total number

of combinations approximately amounts to aJ : Thus, as

the number of hidden units or the number of nominal

variables increases, this preliminary method will suffer

from combinatorial explosion. Moreover, the user is

required to determine an appropriate tolerance parameter

by trial and error, where this parameter is used to regard a

set of similar values of weights as the same. In contrast,

RN2 can run within the computational complexity of

polynomial order.

Apart from using neural networks, regression rules can

be directly found from given data. As a prominent approach,

we can consider some ‘divide-and-conquer’ methods

including CART (Breiman, Friedman, Olshen, & Stone,

1984), ABACUS (Falkenhainer & Michalski, 1990), and

Cubist (Rulequest, 2001). Clearly, we need to perform head-

to-head comparisons to evaluate the relative strength and

weakness of our approach, but reporting such experiments

will be beyond the scope of this paper. Here, it should be

emphasized that our approach can use available domain

knowledge by encoding it as a network structure and/or a set

of some weight values, while the divide-and-conquer

approach is suitable for constructing entirely new structures

from scratch. Thus, in general, our approach is expected to

produce better learning results by using such domain

knowledge, but this claim must be carefully inspected by

further studies.

Our method can be considered one approach toward the

computational scientific discovery, which has a long history

within artificial intelligence. Early systems for numeric law

discovery like BACON (Langley, 1979; Langley et al.,

1987) employed a heuristic search through a space of new

terms and simple equations. Its numerous successors like

FAHRENHEIT (Żytkow, Zhu, & Hussam, 1990) incorpor-

ate more sophisticated and more extensive search through a

larger space of numeric equations. Some methods like

ABACUS (Falkenhainer & Michalski, 1990) can deal with

both nominal and numeric values simultaneously. However,

these methods are based on a combinatorial approach, and

therefore likely to suffer from combinatorial explosion in

search. We believe that our approach has great potential to

overcome this problem. More recently, our methods have

been applied for discovering some Web dynamics (Saito &

Langley, 2002), as well as revising an existing ecosystem

model (Saito et al., 2001) as noted earlier.

In addition, our research is also related to the system

identification tasks based on group method of data handling

(GMDH; Ivakhnenko, 1971), but there are at least two non-

trivial differences. One is that the GMDH approach

investigates polynomials with integer powers, while our

method can find those with real powers such as 0.5, 1.5, or

0.333. The other is that the GMDH employs a combinatorial

approach, while our method adopts a numerical optimiz-

ation of neural networks. To improve the performance of

such combinatorial search, several methods combined with

evolutionary computation have been proposed (Fukumi,

Mitsukuwa, & Akamatsu, 2000; Kargupta & Smith, 1991;

Sano, 1992), and it has been shown that some simple chaotic

behaviors can be modeled. Thus, our future research should

also address examining possibilities that RN2 can be

applicable to identification of a chaotic system.

6. Conclusion

Given data containing both nominal and numeric

variables, we proposed a new framework and method,

called RN2, for extracting regression rules from trained

neural networks. The RN2 method used a combination of

vector quantizers and decision trees for rule extraction. Two

experiments using artificial and scientific data sets showed

that RN2 can successfully extract regression rules almost

equivalent to the original ones, even if the data contains

irrelevant variables and a small amount of noise. In addition,

the other two experiments using financial and automobile

data sets showed that RN2 produces interesting regression

rules.

Table 4

Influence of number I for automobile data set

RMSE type I ¼ 1 I ¼ 2 I ¼ 3 I ¼ 4

Training 3725.07 1989.67 1522.44 1370.38

Cross-validation 3757.56 2132.08 1665.48 1774.09

K. Saito, R. Nakano / Neural Networks 15 (2002) 1279–1288 1287

References

Andrews, A., Diederich, J., & Tickle, A. B (1995). A survey and critique of

techniques for extracting rules from trained artificial neural networks.

Technical Report, Queensland University of Technology.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford:

Clarendon Press.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).

Classification and regression trees. Monterey, CA: Wadsworth

International Group.

Durbin, R., & Rumelhart, D. E. (1989). Product units: A computationally

powerful and biologically plausible extension. Neural Computation, 1,

133–142.

Falkenhainer, B. C., & Michalski, R. S. (1990). Integrating quantitative and

qualitative discovery in the ABACUS system (Vol. III). Machine

learning: An artificial intelligence approach, Cambridge, MA: Morgan

Kaufmann, pp. 153–190.

Fukumi, M., Mitsukuwa, Y., & Akamatsu, N. (2000). A new rule

generation method from neural networks formed using a genetic

algorithm with virus infection. Proceedings of the International Joint

Conference on Neural Networks (Vol. III, pp. 413–418). Como, Italy.

Ishikawa, M. (2000). Rule extraction by successive regularization. Neural

Networks, 13, 1171–1183.

Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE

Transactions on Systems, Man, and Cybernetics, 1, 364–378.

Kargupta, H., & Smith R. (1991). System identification using evolving

polynomial networks. Proceedings of the Fourth International Con-

ference on Genetic Algorithms (pp. 370–376). San Diego.

Langley, P. (1979). Rediscovering physics with BACON.3. Proceedings of

the Sixth International Joint Conference on Artificial Intelligence

(pp. 505–507). Tokyo, Japan.

Langley, P., Simon, H. A., Bradshaw, G. L., & Żytkow, J. M. (1987).

Scientific discovery: Computational explorations of the creative

processes. Cambridge, MA: MIT Press.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions

on Information Theory, 28, 129–137.

Luenberger, D. G. (1984). Linear and nonlinear programming. Reading,

MA: Addison-Wesley.

Mitra, S., & Hayashi, Y. (2000). Neuro-fuzzy rule generation: Survey in

soft computing framework. IEEE Transactions on Neural Networks, 11,

748–768.

Nakano R., & Saito K. (1999). Discovery of a set of nominally conditioned

polynomials. Proceedings of the Second International Conference on

Discovery Science (pp. 287–298). Tokyo, Japan.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Cambridge,

MA: Morgan Kaufmann.

Rulequest (2001). Rulequest research web page. http://www.rulequest.com.

Saito, K., & Langley, P. (2002). Discovering empirical laws of Web

dynamics. The 2002 International Symposium on Applications and the

Internet (pp. 168–175). Nara, Japan.

Saito, K., & Nakano, R. (1997a). Partial BFGS update and efficient step-

length calculation for three-layer neural networks. Neural Computation,

9, 239–257.

Saito, K., & Nakano, R. (1997b). Law discovery using neural networks.

Proceedings of the 15th International Joint Conference on Artificial

Intelligence (pp. 1078–1083). Nagoya, Japan.

Saito, K., & Nakano, R. (2000a). Second-order learning algorithm with

squared penalty term. Neural Computation, 12, 709–729.

Saito, K., & Nakano, R. (2000b). Discovery of relevant weights by

minimizing cross-validation error. Proceedings of the Fourth Pacific-

Asia Conference on Knowledge Discovery and Data Mining (pp. 372–

375). Kyoto, Japan.

Saito, K., Langley, P., Grenager, T., Potter, C. S., Torregrosa, A., &

Klooster, S. A. (2001). Computational revision of quantitative scientific

models. Proceedings of the Fourth International Conference on

Discovery Science (pp. 336–349). Washington, DC.

Saito, K., Ueda, N., Katagiri, S., Fukai, Y., Fujimaru, H., & Fujinawa, M.

(2000). Law discovery from financial data using neural networks.

Proceedings of the IEEE/IAFE/INFORMS Conference on Compu-

tational Intelligence for Financial Engineering (pp. 209–212). New

York.

Sano, C. (1992). Hybird of (ID3 extension þ backpropagation) hybrid &

(case-based reasoner þ Grossbreg net) hybrid with economics model-

ing controlled by genetic algorithm. Applications of Artificial

Intelligence X: Knowledge-Based Systems, SPIE-1707, 180–194.

Orlando.

Stone, M. (1974). Cross-validatory choice and assessment of statistical

predictions (with discussion). Journal of the Royal Statistical Society B,

64, 111–147.

Tickle, A. B., Andrews, R., Golea, M., & Diederich, J. (1998). The truth

will come to light: Directions and challenges in extracting the

knowledge embedded within trained artificial neural networks. IEEE

Transactions on Neural Networks, 9, 1057–1068.

Towell, G. G., & Shavlik, J. W. (1993). Extracting refined rules from

knowledge-based neural networks. Machine Learning, 13, 71–101.

Żytkow, J. M., Zhu, J., & Hussam, A. (1990). Automated discovery in a

chemistry laboratory. Proceedings of the Eighth National Conference

on Artificial Intelligence (pp. 889–894). Boston, MA: AAAI Press.

K. Saito, R. Nakano / Neural Networks 15 (2002) 1279–12881288

http://www.rulequest.com

	Extracting regression rules from neural networks
	Introduction
	Framework for rule extraction
	Polynomial expressions
	Regression rules
	Equivalence of representations
	Learning of neural networks

	Method for rule extraction
	Overview of the method
	Finding representative vectors
	Criterion for representative number selection
	Generating conditional parts
	Summary of the method

	Evaluation by experiments
	Experimental settings
	Experiment using artificial data set
	Experiment using scientific data set
	Experiment using financial data set
	Experiment using automobile data set

	Related work and future directions
	Conclusion
	References

