
Communicated by Raymond Watrous

Partial BFGS Update and Efficient Step-Length Calculation for
Three-Layer Neural Networks

Kazumi Saito
Ryohei Nakano
NTT Communication Science Laboratories,
2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

Second-order learning algorithms based on quasi-Newton methods have
two problems. First, standard quasi-Newton methods are impractical for
large-scale problems because they require N2 storage space to maintain an
approximation to an inverse Hessian matrix (N is the number of weights).
Second, a line search to calculate a reasonably accurate step length is indis-
pensable for these algorithms. In order to provide desirable performance,
an efficient and reasonably accurate line search is needed.

To overcome these problems, we propose a new second-order learn-
ing algorithm. Descent direction is calculated on the basis of a partial
Broydon-Fletcher-Goldfarb-Shanno (BFGS) update with 2Ns memory
space (s ¿ N), and a reasonably accurate step length is efficiently cal-
culated as the minimal point of a second-order approximation to the ob-
jective function with respect to the step length. Our experiments, which
use a parity problem and a speech synthesis problem, have shown that
the proposed algorithm outperformed major learning algorithms. More-
over, it turned out that an efficient and accurate step-length calculation
plays an important role for the convergence of quasi-Newton algorithms,
and a partial BFGS update greatly saves storage space without losing the
convergence performance.

1 Introduction

The backpropagation (BP) algorithm (Rumelhart et al. 1986) has been ap-
plied to various classes of problems, and its usefulness has been proved.
However, even with a momentum term, this algorithm often requires a
large number of iterations for convergence. Moreover, the user is required
to determine appropriate parameters by trial and error. To overcome these
drawbacks, a learning rate maximization method (LeCun et al. 1993), learn-
ing rate adaptation rules (Jacobs 1988; Silva and Almeida 1990), smart al-
gorithms such as QuickProp (Fahlman 1988) and RPROP (Riedmiller and
Braun 1993), and second-order learning algorithms (Watrous 1987; Barnard
1992; Battiti 1992; Møller 1993b) based on nonlinear optimization techniques
(Gill et al. 1981) have been proposed. Each has achieved a certain degree of

Neural Computation 9, 123–141 (1997) c© 1997 Massachusetts Institute of Technology

124 Kazumi Saito and Ryohei Nakano

success. Among these approaches, we believe that second-order learning
algorithms should be investigated more because they theoretically have ex-
cellent convergence properties (Gill et al. 1981). At present, however, they
have two problems.

One is scalability. Second-order algorithms based on Levenberg-
Marquardt or quasi-Newton methods cannot suitably increase in scale for
large problems. Levenberg-Marquardt algorithms generally require a large
amount of computation until convergence, even for midscale problems that
involve many hundreds of weights. They require O(N2m) operations to cal-
culate the descent direction during any one iteration; N denotes the number
of weights and m the number of examples. Standard quasi-Newton algo-
rithms (Watrous 1987; Barnard 1992) are rarely applied to large-scale prob-
lems that involve more than many thousands of weights because they re-
quire N2 storage space to maintain an approximation to an inverse Hessian
matrix. In order to cope with this problem, the OSS algorithm (Battiti 1989)
adopted the memoryless update (Gill et al. 1981); however, OSS may not
provide desirable performance because the descent direction is calculated
on the basis of a fast but rough approximation.

The other problem is the burden of step-length computation. A line search
to calculate an adequate step length is indispensable for second-order al-
gorithms that are based on quasi-Newton or conjugate gradient methods.
Since an inaccurate line search may provide undesirable performance, a rea-
sonably accurate line search is needed. However, an exact line search based
on existing methods generally requires a nonnegligible computational load,
at least a few number of function and/or gradient evaluations. Since it is
widely recognized that successful convergence of conjugate gradient meth-
ods relies heavily on the accuracy of a line search, it seems rather difficult
to increase the speed of conjugate gradient algorithms. In the SCG algo-
rithm (Møller 1993b), although the step length is estimated by using the
model trust region approach (Gill et al. 1981), this method can be regarded
as an efficient one-step line search method based on a one-sided difference
equation. Fortunately, successful convergence of quasi-Newton algorithms
is theoretically guaranteed even with an inaccurate line search if certain con-
ditions are satisfied (Powell 1976), but efficient convergence cannot always
be expected. Thus, we believe that if the step length can be calculated with
greater efficiency and reasonable accuracy, the quasi-Newton algorithms
will work better from two aspects: processing efficiency and convergence.

For large-scale problems that include a large number of redundant train-
ing examples, on-line algorithms (LeCun et al. 1993), which perform a weight
update for each single example, will work with greater efficiency than an off-
line counterpart. Although second-order algorithms are basically not suited
to perform on-line updating, waiting for a sweep of many examples before
updating is not reasonable. Toward the improvement, several attempts have
been made to introduce “pseudo-on-line” updating into second-order algo-
rithms, where updates are performed on smaller subsets of data (Møller

BFGS Update and Step-Length Calculation 125

1993c; Kuhn and Herzberg 1990). Thus, if a better second-order algorithm
is developed, its pseudo-on-line version will work more efficiently.

This paper is organized as follows. Section 2 describes a new second-
order learning algorithm based on a quasi-Newton method, called BPQ,
where the descent direction is calculated on the basis of a partial BFGS
update and a reasonably accurate step length is efficiently calculated as the
minimal point of a second-order approximation. Section 3 evaluates BPQ’s
performance in comparison with other major learning algorithms.

2 BPQ Algorithm

2.1 The Problem. Let {(x1, y1), . . . , (xm, ym)} be a set of examples, where
xt denotes an N-dimensional input vector and yt a target value correspond-
ing to xt. In a three-layer neural network, let h be the number of hidden
units, wi (i = 1, . . . , h) the weight vector between all the input units and
the hidden unit i, and w0 = (w00, . . . ,w0h)

T the weight vector between all
the hidden units and the output unit; wi0 means a bias term and xt0 is set
to 1. Note that aT denotes the transposed vector of a. Hereafter, a vector
consisting of all parameters, (wT

0 , . . . ,wT
h)

T, is simply expressed as Φ; let
N(= nh + 2h + 1) be the dimension of Φ. Then, learning in the three-layer
neural network can be defined as the problem of minimizing the following
objective function:

f (Φ) = 1
2

m∑
t=1

(yt − zt)
2, (2.1)

where zt = z(xt;Φ) = w00 +
∑h

i=1 w0iσ(wT
i xt). σ(u) represents a sigmoidal

function, σ(u) = 1/(1+ e−u). Note that we do not employ nonlinear trans-
formation at the output unit because it is not essential from the viewpoint
of function approximation.

2.2 Quasi-Newton Method. A second-order Taylor expansion of f (Φ+
1Φ) about 1Φ is given as f (Φ) + (∇ f (Φ))T1Φ + 1

2 (1Φ)T∇2 f (Φ)1Φ. If
∇2 f (Φ) is positive definite, the minimal point of this expansion is given
by 1Φ = −(∇2 f (Φ))−1∇ f (8). Newton techniques minimize the objective
function f (Φ) by iteratively calculating the descent direction,1Φ (Gill et al.
1981). However, since O(N3)operations are required to calculate (∇2 f (Φ))−1

directly, we cannot expect these techniques to increase suitably in scale for
large problems. Quasi-Newton techniques, on the other hand, calculate a
matrix H through iterations in order to approximate (∇2 f (Φ))−1. The basic
algorithm is described as follows (Gill et al. 1981):

Step 1: Initialize Φ1, set H1 = I (I: identity matrix), and set k = 1.
Step 2: Calculate the current descent direction: 1Φk = −Hkgk, where

gk = ∇ f (Φk).

126 Kazumi Saito and Ryohei Nakano

Step 3: Terminate the iteration if a stopping criterion is satisfied.
Step 4: Calculate the step length λk that minimizes f (Φk + λ1Φk).
Step 5: Update the weights: Φk+1 = Φk + λk1Φk.
Step 6: If k ≡ 0 (mod N), set Hk+1 = I; otherwise, update Hk+1.
Step 7: Set k = k+ 1, return to Step 2.

2.3 Existing Methods for Calculating Descent Directions. Several
methods for updating Hk+1 have been proposed. Among them, the Broydon-
Fletcher-Goldfarb-Shanno (BFGS) update (Fletcher 1980) was the most suc-
cessful update in a number of studies. By putting pk = λk1Φk and qk =
gk+1 − gk, the BFGS formula is given as

Hk+1 = Hk −
pkqT

k Hk +HkqkpT
k

pT
k qk

+
(

1+ qT
k Hkqk

pT
k qk

)
pkpT

k

pT
k qk

. (2.2)

In large-scale problems that involve more than many thousands of
weights, maintaining the approximation matrix H becomes impractical be-
cause it requires N2 storage space. In order to cope with this problem,
the OSS (one-step secant) algorithm (Battiti 1989) adopted the memory-
less BFGS update (Gill et al. 1981). By always taking the previous matrix Hk
as the identity matrix (Hk = I), the descent direction of Step 2 is calculated
as

1Φk+1 = −gk+1+
pkqT

k gk+1 + qkpT
k gk+1

pT
k qk

−
(

1+ qT
k qk

pT
k qk

)
pkpT

k gk+1

pT
k qk

.(2.3)

Clearly equation 2.3 can be calculated with O(N)multiplications and storage
space. However, OSS may not provide desirable performance because the
descent direction is calculated on the basis of the above substitution. In our
early experiments, this method worked rather poorly in comparison with
the partial BFGS update proposed in the next section.

2.4 New Method for Calculating Descent Directions. In this section,
we propose a partial BFGS update with 2Ns memory (s ¿ N), where the
search directions are exactly equivalent to those of the original BFGS update
during the first s+ 1 iterations. The partiality parameter s means the length
of the history described below. By putting rk = Hkqk, we have

Hkgk+1 = Hkqk +Hkgk = rk − pk

λk
.

Then, the descent direction based on equation 2.2 can be calculated as

1Φk+1 = −Hk+1gk+1

BFGS Update and Step-Length Calculation 127

= −rk + pk

λk
+ pkrT

k gk+1 + rkpT
k gk+1

pT
k qk

−
(

1+ qT
k rk

pT
k qk

)
pkpT

k gk+1

pT
k qk

. (2.4)

After calculating rk, equation 2.4 can be calculated using O(N) multiplica-
tions and storage space, just like the memoryless BFGS update. Now, we
show that it is possible to calculate rk within O(Ns)multiplications and 2Ns
storage space by using the partial BFGS update.

Here, we assume k ≤ s. When k = 1, r1 (= H1q1 = g2 − g1) can be calcu-
lated only by subtractions. When k > 1, we assume that each of r1, . . . , rk−1
has been calculated and stored. Note that for i < k,

αi = 1
pT

i qi
and βi = αi(1+ αiqT

i ri)

have already been calculated during the iterations. Thus, by recursively
applying equation 2.2, rk can be calculated with O(Nk) multiplications and
2Nk storage space, as follows:

rk = Hkqk

= Hk−1qk − αk−1pk−1rT
k−1qk − αk−1rk−1pT

k−1qk + βk−1pk−1pT
k−1qk

= qk +
k−1∑
i=1

(−αipirT
i qk − αiripT

i qk + βipipT
i qk) . (2.5)

Next, when the number of iterations exceeds s+1, we have two alternatives:
restarting the update by discarding the accumulated vectors or continuing
the update by using the latest vectors. In both cases, equation 2.5 can be
calculated within O(Ns) multiplications and 2Ns storage space. Therefore,
it has been shown that equation 2.4 can be calculated within O(Ns) mul-
tiplications and 2Ns storage space. In our experiments, the former update
was employed because the latter worked poorly when s was small.

Although the idea of partial quasi-Newton methods has been briefly
described (Luenberger 1984), strictly speaking, our update is different. The
earlier proposal intended to store the vectors pi and qi, but our update
stores the vectors pi and ri. The immediate advantage of this partial update
over the original BFGS update is the applicability to large-scale problems.
Even if N is very large, by setting s to an adequate small value with respect
to the amount of available storage space, our update will work. On the
other hand, the probable advantage over the memoryless BFGS update is
the superiority of the convergence property. However, this claim should be
examined through a wide range of experiments. Note that when s = 0, the
partial BFGS update always gives the gradient direction; when s = 1, it
corresponds to the memoryless BFGS update.

128 Kazumi Saito and Ryohei Nakano

2.5 Existing Methods for Calculating Step Lengths. In Step 4, since λ is
the only variable in f , we can express f (Φ+λ1Φ) simply as ζ(λ). Calculating
λ, which minimizes ζ(λ), is called a line search. Among a number of possible
line search methods, we considered the following typical three methods: a
fast but inaccurate one, a moderately accurate one, and an exact but slow
one.

The first method is explained below. By using quadratic interpolation
(Gill et al. 1981; Battiti 1989), we can derive a fast line search method that
only guarantees ζ(λ) < ζ(0). Let λ1 be an initial value for a step length. If
ζ(λ1) < ζ(0),λ1 becomes the resultant step length; otherwise, by considering
a quadratic function h(λ) that satisfies the conditions h(0) = ζ(0), h(λ1) =
ζ(λ1), and h′(0) = ζ ′(0), we get the following approximation of ζ(λ):

ζ(λ) ≈ h(λ) = ζ(0)+ ζ ′(0)λ+ ζ(λ1)− ζ(0)− ζ ′(0)λ1

λ2
1

λ2.

Since ζ(λ1) ≥ ζ(0) and ζ ′(0) < 0, the minimal point of h(λ) is given by

λ2 = −
ζ ′(0)λ2

1

2(ζ(λ1)− ζ(0)− ζ ′(0)λ1)
. (2.6)

Note that 0 < λ2 < λ1 is guaranteed by equation 2.6. Thus, by iterating this
process until ζ(λν) < ζ(0), we can always find aλν that satisfies ζ(λν) < ζ(0),
where ν denotes the number of iterations. Here, the initial value of λ1 is set
to 1 because the optimal step length is near 1 when H closely approximates
(∇2 f (Φ))−1. Hereafter, a quasi-Newton algorithm based on the original or
partial BFGS update in combination with this fast but inaccurate line search
is called BFGS1.

By using quadratic extrapolation (Fletcher 1980), we can derive a mod-
erately accurate line-search method that guarantees ζ ′(λν) > γ1ζ

′(λν−1) as
well as ζ(λν) < ζ(λν−1), where γ1 is a small constant (e.g., 0.1). Namely,
when λν does not satisfy the stopping criterion, if ζ(λν) ≥ ζ(λν−1), λν+1 is
calculated using equation 2.6; otherwise, by considering an extrapolation to
the slopes ζ ′(λν−1) and ζ ′(λν), the appropriate expression for the minimizing
value λν+1 is

λν+1 = λν − ζ ′(λν) λν − λν−1

ζ ′(λν)− ζ ′(λν−1)
. (2.7)

However, if ζ ′(λν) ≤ ζ ′(λν−1), then λν+1 does not exist; thus, λν+1 is set to
λν−1+γ2(λν−λν−1), where γ2 is an adequate value (e.g., 9). In this method,λ0
is set to 0, and λ1 is estimated as min(1,−2ζ ′(0)−1(f (Φcurrent)− f (Φprevious))).
Note that to use this estimate of λ1 for the first method is not good strategy
because it does not have an extrapolation process, but λ1 can be a very small
value. Hereafter, a quasi-Newton algorithm based on the original or partial

BFGS Update and Step-Length Calculation 129

BFGS update in combination with this moderately accurate line search is
called BFGS2.

An exact but slow line search method can be constructed by iteratively
using the BFGS2 line search method until a stopping criterion is met, for
example, ‖ζ ′(λν)‖ < 10−8. The difference from the BFGS2 method is that
equation 2.7 is used for interpolation as well as extrapolation. Hereafter, a
quasi-Newton algorithm based on the original or partial BFGS update in
combination with this exact but slow line search is called BFGS3.

2.6 New Method for Calculating Step Lengths. Here we propose a new
method for calculating a reasonably accurate step-length λ in Step 4.

2.6.1 Basic Procedure. A second-order Taylor approximation of ζ(λ) is
given as

ζ(λ) ≈ ζ(0)+ ζ ′(0)λ+ 1
2
ζ ′′(0)λ2.

When ζ ′(0) < 0 and ζ ′′(0) > 0, the minimal point of this approximation is
given by

λ = − ζ
′(0)
ζ ′′(0)

(
= − (∇ f (Φ))T1Φ

(1Φ)T∇2 f (Φ)1Φ

)
. (2.8)

Other cases will be considered in the next section.
For the three-layer neural networks defined by equation 2.1, we can ef-

ficiently calculate ζ ′(0) and ζ ′′(0) as follows. By differentiating ζ(λ) and
substituting 0 for λ, we obtain

ζ ′(0) = −
m∑

t=1

(yt − zt)z′t and ζ ′′(0) =
m∑

t=1

((z′t)
2 − (yt − zt)z′′t).

Now that the derivative of zt = z(xt;Φ) is defined as d
dλz(xt;Φ+ λ1Φ)|λ=0,

we obtain

z′t = 1w00 +
h∑

i=1

(1w0iσit + w0iσ
′
it) and z′′t =

h∑
i=1

(21w0iσ
′
it + w0iσ

′′
it),

where σit = σ(wT
i xt), σ ′it = σit(1 − σit)(1wi)

Txt, σ ′′it = σ ′it(1 − 2σit)(1wi)
Txt,

and 1wij denotes the change of wij, calculated in Step 2.
Now we consider the computational complexity of calculating the step

length using equation 2.8. Clearly, (1wi)
Txt must be calculated for each pair

of hidden unit i and input xt; thus, since the number of hidden units is h and
the number of inputs is m, at least nhm multiplications are required. Since
the order of multiplications required to calculate the remainder is O(hm),
and N = nh+ 2h+ 1, the total complexity of the calculation is Nm+O(hm).

130 Kazumi Saito and Ryohei Nakano

This algorithm can be generalized to multilayered networks with other
differentiable activation functions; thus, it is applicable to recurrent net-
works (Rumelhart et al. 1986). Consider a hidden unit τ connected to the
output layer. We assume that its output value is defined by v = a(wTu),
where u is the output values of the units connected to the unit τ , w equals
the weights attached to these connections, and a(·) is an activation func-
tion. Then the first- and second-order derivatives of v with respect to λ are
calculated as

v′ = a′(wTu)(1wTu+wTu′),

v′′ = a′′(wTu)(1wTu+wTu′)2 + a′(wTu)(21wTu′ +wTu′′).

Thus, by successively applying these formulas in reverse, we can calculate
the step length for multilayered networks. Note that if ui is an output value
of an input unit, then u′i = u′′i = 0.

2.6.2 Coping with Undesirable Cases. In the above, we assumed ζ ′(0) < 0.
When ζ ′(0) > 0, the value of the objective function cannot be reduced along
the search direction; thus, we set1Φk to−∇ f (Φk) and restart the update by
discarding the accumulated vectors (p, r). Note that ζ ′(0) < 0 is guaranteed
by such a setting unless ‖∇ f (Φk)‖ = 0 because ζ ′(0) = (∇ f (Φk))

T1Φk =
−‖∇ f (Φk)‖2 < 0.

When ζ ′(0) < 0 and ζ ′′(0) ≤ 0, equation 2.8 gives a negative value or
infinity. To avoid this situation, we employ the Gauss-Newton technique.
The first-order approximation of zt = z(xt;Φ+ λ1Φ) is zt + z′tλ. Then, ζ(λ)
of the next iteration can be approximated by

ζ(λ) ≈ 1
2

m∑
t=1

(yt − (zt + z′tλ))
2 = ζ(0)+ ζ ′(0)λ+ 1

2

m∑
t=1

(z′t)
2λ2.

The minimal point of this approximation is given by

λ = − ζ ′(0)∑m
t=1(z

′
t)

2 . (2.9)

Clearly, equation 2.9 always gives a positive value when ζ ′(0) < 0.
In many cases, it is useful from a practical sense to limit the maximum

change in Φ, which should be done during any one iteration (Gill et al. 1981).
Here, if ‖λ1Φ‖ > 1.0, λ is set to ‖1Φ‖−1.

Since λ is calculated on the basis of the approximation, we cannot always
reduce the value of the objective function, ζ(λ). When ζ(λ) ≥ ζ(0), we
employ the fast line search given by equation 2.6.

2.6.3 Summary of Step-Length Calculation. By integrating the above pro-
cedures, we can specify Step 4 as follows.

BFGS Update and Step-Length Calculation 131

Step 4.1: If ζ ′(0) > 0, set 1Φk = −∇ f (Φk) and k = 1.
Step 4.2: If ζ ′′(0) > 0, calculate λ using equation 2.8;

otherwise, calculate λ using equation 2.9.
Step 4.3: If ‖λ1Φk‖ > 1.0, set λ = ‖18k‖−1.
Step 4.4: If ζ(λ) > ζ(0), calculate λ using equation 2.6 until ζ(λ) < ζ(0).

Hereafter, the quasi-Newton algorithm based on our partial BFGS update
in combination with our step-length calculation is called BPQ (Bp based
on partial Quasi-Newton). Incidentally, a modified OSS algorithm, OSS2 (a
combination of the memoryless BFGS update and our step-length calcula-
tion), may be another good algorithm and will be evaluated in the experi-
ments.

2.7 Computational Complexity. We consider the computational com-
plexity of BPQ and other algorithms with respect to one-iteration in which
every training example is presented once. In off-line BP, the complexity
(number of multiplications) to calculate the objective function is nhm +
O(hm) and the complexity for the gradient vector is nhm + O(hm). Thus,
since N = nh+ 2h+ 1, the complexity for off-line BP is 2Nm+O(hm). Here,
the complexity for a weight update is just N (or 2N if momentum term is
used), and is safely negligible.

In this article, we define one-iteration of on-line BP as m updates sweep-
ing all examples once. In addition to the above complexity, since on-line BP
performs a weight update for each single example, the learning rate is mul-
tiplied to each element of the gradient vectors Nm times in one-iteration;
thus, the complexity for on-line BP is 3Nm+O(hm). In the case of on-line BP
with momentum term, the momentum factor is also multiplied to each ele-
ment of the previous modification vectors Nm times in one-iteration; thus,
the complexity for on-line momentum BP is 4Nm+O(hm).

In addition to the complexity for off-line BP, BPQ calculates the descent
direction based on the partial BFGS update with a history of at most s
iterations and also calculates the step length. The complexity of the former
calculation is O(Ns) (see Section 2.4) and that of the latter is Nm + O(hm)
(see Section 2.6.1). Here, note that the computational complexity to calculate
the objective function can be reduced from Nm+O(hm) to O(hm) for three-
layer networks. This is because in the next iteration, the output value of
each hidden unit is given by σ(wT

i xt + λ(1wi)
Txt), but (1wi)

Txt is already
calculated when the step length is calculated. Thus, the total complexity for
BPQ is 2Nm + O(Ns) + O(hm). To reduce the generalization error for an
unseen example, m should be larger than N. Since s is smaller than N, the
complexity of O(Ns) usually becomes much smaller than that of 2Nm, and
the complexity for BPQ remains almost equivalent to that of off-line BP.

A general method for calculating the denominator of equation 2.8 has
been proposed (Pearlmutter 1994; Møller 1993a); after calculating∇2 f (Φ)1Φ,

132 Kazumi Saito and Ryohei Nakano

the denominator is calculated by using an inner product. The result is math-
ematically the same as our step-length calculation, but the computational
complexity of this method is much larger than that of our method, at least
in the case of three-layer networks as shown below. By using Pearlmutter’s
operator, which is defined by<

1Φ{ f (Φ)} = ∂
∂λ

f (8+λ1Φ)|λ=0 (Pearlmutter
1994), we can see that <

1Φ{ ∂
∂wij

f (Φ)} is an element of ∇2 f (Φ)1Φ because

<
1Φ{∇ f (Φ)} = ∇2 f (Φ)1Φ. Now, considering the case of a weight between

the output unit and the hidden unit i, which is expressed as w0i, we obtain

<18
{

∂

∂w0i
f (Φ)

}
= <

1Φ

{
−

m∑
t=1

(yt − zt)σit

}

=
m∑

t=1

(<
1Φ{zt}σit − (yt − zt)<18{σit}),

where <
1Φ{zt} = 1w00 +

∑h
i=1(1w0iσit + w0i<1Φ{σit}) and <

1Φ{σit} =
σit(1 − σit)(1wi)

Txt. Clearly, just like our method, (1wi)
Txt must be calcu-

lated for each pair of hidden unit i and input xt; thus, a minimum of nhm
multiplications is required. Additionally, a complexity of at least O(m) is
required for calculating<18{ ∂

∂w0i
f (Φ)}. Therefore, since a similar argument

can be applied to other weights and the total number of the weights is N,
the complexity of the existing method becomes nhm+O(Nm). On the other
hand, the complexity of our method is nhm+O(hm), which is more efficient
because N = nh+ 2h+ 1.

Although the SCG (scaled conjugate gradient) algorithm (Møller 1993b)
estimates the step length by using the model trust region approach, this
method can be regarded as an efficient one-step line search method based
on a one-sided difference equation. The step length calculated from equa-
tion 2.8 is approximated by

∇2 f (Φ)1Φ ≈ ∇ f (Φ+ δ1Φ)−∇ f (Φ)
δ

,

where δ is defined as δ = δ0‖1Φ‖−1 and δ0 is a small constant. Clearly, the
complexity of SCG is approximately double that of BP because the gradient
vector ∇ f (Φ+ δ1Φ) must be calculated during one-iteration. If the differ-
ence parameter δ is approximately equal to the optimal step-length λ, SCG
will provide a more faithful picture of the error surface than our method;
however, since our purpose is to estimate the optimal step-length λ, we
generally do not know such δ.

3 Experiments

This section evaluates BPQ’s performance in comparison with many other
learning algorithms through experiments that use three types of problems.

BFGS Update and Step-Length Calculation 133

Figure 1: Two-weight problem.

3.1 Two-Weight Problem. In order to evaluate learning efficiency graph-
ically, we designed a simple learning problem where only two weights were
adjustable. Figure 1 describes the problem. In a three-layer network, each
layer consists of only one unit, and the weight between the hidden unit and
the output unit is fixed at 1. In this problem, the weight between the input
and hidden units is expressed as w1, the weight corresponding to the bias
term at the output unit is expressed as w2, and an activation function of a
hidden unit is assumed to be σ(x) = 1/(1 + exp(−x)). Each target value yt
shown in Figure 1 was calculated from the corresponding input value xt
by setting (w1,w2) = (1, 0). Thus, the global minimum point was given by
these weight values.

In this experiment, BPQ was compared with eight other learning algo-
rithms: on-line BP with momentum term, off-line BP, off-line BP with mo-
mentum term, BP with learning rate adaptation (Silva and Almeida 1990),
SCG (Møller 1993b), BFGS1, BFGS2, and BFGS3. Note that the memoryless
BFGS update is equivalent to the original BFGS update when N = 2. The
parameters of each algorithm were determined by trial and error or set to
the values recommended by the inventors (Silva and Almeida 1990; Møller
1993b). For on-line momentum BP, the learning rate and the momentum fac-
tor were set to η = 0.05 and α = 0.9. For off-line BP, the learning rate η was
set to 0.1. For off-line momentum BP, the learning rate and the momentum
factor were set to η = 0.025 and α = 0.9. For adaptive BP, the increase and
the decrease factors were set to u = 1.1 and d = u−1, and the initial update
value η0 was set to 0.01. For SCG, the constant δ0 was set to 10−4, and the
initial scaling parameter λ1 was set to 10−6.

Figures 2 and 3 show the learning trajectories on the error surface with
respect to w1 and w2 during 100 iterations starting at (w1,w2) = (−0.5, 0),
where MSE stands for mean squared error:

MSE = 1
5

5∑
t=1

(yt − (σ (w1xt)+ w2))
2.

(These experiments were done on a Power Macintosh 8100/100 computer.)

134 Kazumi Saito and Ryohei Nakano

Figure 2: Learning trajectories of first-order algorithms.

Figure 2 shows that the search of these first-order algorithms went very
slowly along the curved valley floor. Up to 100 iterations, any first-order
algorithm was unable to reach the minimum point. This may be due to
the inherent difficulty of first-order methods; since the directions of the
successive gradient vectors are almost opposite near the valley floor, even
learning rate adaptation by sign changes of the last two gradients cannot
improve the learning efficiency. Note that the trajectories of BPs oscillate
widely when a larger η is used.

On the other hand, Figure 3 shows that SCG, BFGS1, BFGS2, BFGS3,
and BPQ found the minimum point within 100 iterations. In comparison
with BPQ, SCG required a larger number of iterations before reaching the
minimum point. BFGS1 required the largest number of iterations, showing
that the accuracy of the step-length calculation is important for solving this
problem. BFGS2 worked very well, almost identical to BPQ. The number
of iterations for BFGS3 was slightly smaller than that for BPQ, but BFGS3
required much more computation time due to an exact line search. These

BFGS Update and Step-Length Calculation 135

Figure 3: Learning trajectories of second-order algorithms.

experimental results indicate that second-order methods will work well
even if an error surface forms a curved valley floor.

3.2 Parity Problem. Since parity problems have been widely used as
benchmarks, the eight-bit parity problem was used to compare BPQ with
seven other algorithms: on-line momentum BP, adaptive BP, SCG, OSS2,
BFGS1, BFGS2, and BFGS3. Since the scale of the problem was quite small,
BPQ employed the original BFGS update; thus s = N. In the experiments,
we used a three-layer network with eight hidden units (h = 8, N = 82).

136 Kazumi Saito and Ryohei Nakano

Figure 4: Convergence for the 8-bit parity problem.

All possible input patterns were used as training examples (m = 256), and
the target values were set to 1 or 0. The parameters of each algorithm were
exactly the same as in the previous experiment, except that the learning rate
η was set to 0.1 for on-line momentum BP. In all the algorithms, the initial
values for the weights were randomly generated in the range of [−1, 1]. In
the experiments, the maximum CPU processing time was set to 100 seconds.
The iteration was terminated when ‖∇ f (w)‖ < 10−8. (These experiments
were done on an HP9000/735 computer.)

Figure 4a shows convergence property of BPQ and first-order algorithms
with respect to the average RMSE (root mean squared error):

√
2 f (w)/m)

and the standard deviation over 100 trials for each algorithm. Among these
algorithms, BPQ converged the quickest, allowing us to stop the iteration
at an early stage. Figure 4b compares convergence property of BPQ with
second-order algorithms. In comparison with BPQ, the convergence of the
other second-order algorithms was slow. This shows that the step-length
calculation plays an important role for quasi-Newton methods.

BFGS Update and Step-Length Calculation 137

3.3 Practical Problem. In order to evaluate how BPQ works on large-
scale problems, we performed experiments on a speech synthesis problem
by using a data set used for parrot-like speaking (Nakano et al. 1995). This
learning problem is a sort of nonlinear autoregression; the input vector
consists of a feature vector (10 values) and an acoustic wave (8 values),
and the target output value is the next value of the acoustic wave; the total
number of input units is 18 (n = 18). In these experiments, the number
of hidden units was set to 36 (h = 36); thus, the number of weights was
721 (N = 721). By using 12,800 training examples (m = 12, 800), BPQ was
compared with eight other algorithms: on-line BP, on-line momentum BP,
adaptive BP, SCG, OSS2, BFGS1, BFGS2, and BFGS3. In the algorithms, the
initial values for the weights between the input and hidden units were
randomly generated in the range of [−1, 1]. The values for the weights
between the hidden and output units were set to 0, but the bias value at the
output unit was set to the average output value of all training examples.
In the experiments, the maximum number of iterations was set to 100, and
the average RMSE was used to evaluate the convergence property. (These
experiments were also done on an HP9000/735 computer.)

Figure 5a compares BPQ with the first-order algorithms using the conver-
gence property with respect to the average RMSE and standard deviation
over 10 trials for each algorithm. Note that standard deviation for adaptive
BP is not shown because it was always 0. For on-line BP, the learning rate
η was set to 1.0, the best value in our experiments; however, the learning
curve oscillated widely. For on-line momentum BP whose momentum fac-
tor α was fixed at 0.9, the learning rate η was set to 0.1, the best value in
our experiments; although the learning curve did not oscillate widely, the
convergence property was very similar to that of on-line BP. For adaptive
BP, the learning rate η was set to 0.1 or 1.0; both values gave similar and
rather poor results. For BPQ, the parameter s was set to 50; convergence was
the quickest, allowing us to stop the iteration at an early stage. Figure 5b
compares BPQ with other second-order algorithms using the average val-
ues over 10 trials for each algorithm. In comparison to BPQ, BFGS1 worked
rather poorly; BFGS3 required more processing time to achieve the level
equal to the best RMSE of BPQ, while BFGS2 worked better than BFGS3,
rather close to BPQ.

Figure 5c compares the average one-iteration processing time of all algo-
rithms. One-iteration time of OSS2 or BPQ was almost equivalent to that of
adaptive BP. On-line BP was about 1.3 times slower due to weight updates
for each single example; on-line momentum BP was almost twice as slow
due to additional multiplication of the momentum factor. BFGS1 required a
half more processing since it sometimes required a few function evaluations
in order to shorten the step lengths; BFGS2 was almost four times slower due
to an additional line search calculation to meet its stopping criterion; BFGS3
was almost seven times slower due to an exact line search calculation. SCG
was almost twice as slow due to an additional gradient calculation.

138 Kazumi Saito and Ryohei Nakano

Figure 5: Convergence for a practical problem.

Figure 6 shows the influence of the partiality parameter s on the con-
vergence property for each of the four line search algorithms. Each curve
is drawn using the average RMSE over 10 trials. In general, the inference
was small compared with the difference of line search methods. BPQ with
s = 5 worked as nicely as with s = 50, while BPQ with s = 2 worked poorly
compared with BPQ with s ≥ 5. Consequently, it was shown that an effi-
cient and accurate step-length calculation plays an important role for the
convergence of quasi-Newton algorithms, while the partial BFGS update
with a proper s greatly saves storage space without losing the convergence
performance.

BFGS Update and Step-Length Calculation 139

Figure 6: Effect of partiality parameter s.

4 Conclusion

We have proposed a small-memory efficient second-order learning algo-
rithm called BPQ for three-layer neural networks. In BPQ, the search di-
rection is calculated on the basis of a partial BFGS update, and a reason-
ably accurate step length is efficiently calculated as the minimal point of
a second-order approximation. In our experiments that used a two-weight
problem, a parity problem, and a speech synthesis problem, BPQ worked
better than major learning algorithms. Moreover, it turned out that an ef-
ficient and accurate step-length calculation plays an important role for the
convergence of quasi-Newton algorithms, while the partial BFGS update
greatly saves storage space without losing the convergence performance.
In the future, we plan to do further comparisons using a wider variety of
problems, including large-scale classification problems.

Acknowledgments

We thank anonymous referees for many helpful suggestions and comments.

140 Kazumi Saito and Ryohei Nakano

References

Barnard, E. 1992. Optimization for training neural nets. IEEE Trans. Neural Net-
works 3(2), 232–240.

Battiti, R. 1989. Accelerating back-propagation learning: Two optimization
methods. Complex Systems 3(4), 331–342.

Battiti, R. 1992. First- and second-order methods for learning between steepest
descent and Newton’s method. Neural Comp. 4(2), 141–166.

Fahlman, S. 1988. Faster-learning variations on back-propagation: an empirical
study. In Proceedings of the 1988 Connectionist Models Summer School, pp. 38–51.
San Mateo, CA.

Fletcher, R. 1980. Practical Methods of Optimization. Vol. 1. John Wiley, New York.
Gill, P., Murray, W., and Wright, M. 1981. Practical Optimization. Academic Press,

London.
Jacobs, R. 1988. Increased rates of convergence through learning rate adaptation.

Neural Networks 1(4), 295–307.
Kuhn, G., and Herzberg, P. 1990. Some variations on training recurrent neural

networks. In Proceedings of CAIP Neural Networks Workshop, pp. 15–17, Rutgers
University, New Brunswick, NJ.

LeCun, Y., Simard, P., and Pearlmutter, B. 1993. Automatic learning rate maxi-
mization by on-line estimation of the hessian’s eigenvectors. In Neural Infor-
mation Processing Systems 5, S. Hanson, J. Cowan, and C. Giles, eds., pp. 156–
163. Morgan Kaufmann, San Mateo, CA.

Luenberger, D. 1984. Linear and Nonlinear Programming. Addison-Wesley, Read-
ing, MA.

Møller, M. 1993a. Exact calculation of the product of the Hessian matrix of feed-
forward network error functions and a vector in O(N) time. Tech. Rep. DAIMI
PB-432, Computer Science Department, Aarthus University.

Møller, M. 1993b. A scaled conjugate gradient algorithm for fast supervised
learning. Neural Networks 6(4), 525–533.

Møller, M. 1993c. Supervised learning on large redundant training sets. Interna-
tional J. Neural Systems 4(1), 15–25.

Nakano, R., Ueda, N., Saito, K., and Yamada, T. 1995. Parrot-like speaking using
optimal vector quantization. In Proc. IEEE International Conference on Neural
Networks, Parse, Australia.

Pearlmutter, B. 1994. Fast exact multiplication by the Hessian. Neural Comp. 6(1),
147–160.

Powell, M. 1976. Some global convergence properties of a variable metric algo-
rithm for minimization without exact line searches. In Nonlinear Programing,
SIAM-AMS Proceedings, Vol. 9, Providence, RI.

Riedmiller, M., and Braun, H. 1993. A direct adaptive method for faster back-
propagation learning: The rprop algorithm. In Proc. IEEE International Con-
ference on Neural Networks, San Francisco.

Rumelhart, D., Hinton, G., and Williams, R. 1986. Learning internal represen-
tations by error propagation. In Parallel Distributed Processing, D. Rumelhart
and J. McClelland, eds., pp. 318–362. MIT Press, Cambridge, MA.

BFGS Update and Step-Length Calculation 141

Silva, F., and Almeida, L. 1990. Speeding up backpropagation. In Advanced Neural
Computers, R. Eckmiller, ed., pp. 151–160. North-Holland, Amsterdam.

Watrous, R. 1987. Learning algorithms for connectionist networks: Applied gra-
dient methods of nonlinear optimization. In Proc. IEEE International Confer-
ence on Neural Networks, pp. II619–627, San Diego, CA.

Received May 22, 1995; accepted April 8, 1996.

